首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 27 毫秒
1.
This study seeks to improve the effectiveness of the pretreatment stage when direct furfural production is integrated into the concept of a lignocellulosic biomass biorefinery. First of all, the catalytic effects of different phosphorus-containing salts (AlPO₄, Ca₃(PO₄)₂, FePO₄, H₃PO₄, NaH₂PO₄) were analysed in hydrolysis for their ability to convert birch wood C-5 carbohydrates into furfural. The hydrolysis process was performed with three different amounts of catalyst (2, 3 and 4 wt.%) at a constant temperature (175 °C) and treatment time (90 min). It was found that the highest amount of furfural (63–72%, calculated based on the theoretically possible yield (% t.p.y.)) was obtained when H₃PO₄ was used as a catalyst. The best furfural yield among the used phosphorus-containing salts was obtained with NaH₂PO₄: 40 ± 2%. The greatest impact on cellulose degradation during the hydrolysis process was observed using H₃PO₄ at 12–20% of the initial amount, while the lowest degradation was observed using NaH₂PO₄ as a catalyst. The yield of furfural was 60.5–62.7% t.p.y. when H₃PO₄ and NaH₂PO₄ were combined (1:2, 1:1, or 2:1 at a catalyst amount of 3 wt.%); however, the amount of cellulose that was degraded did not exceed 5.2–0.3% of the starting amount. Enzymatic hydrolysis showed that such pretreated biomass could be directly used as a substrate to produce glucose. The highest conversion ratio of cellulose into glucose (83.1%) was obtained at an enzyme load of 1000 and treatment time of 48 h.  相似文献   

2.
An environmentally benign processing approach for furfural production from xylose and xylan under very mild conditions(353–373 K) was developed with the addition of metal chlorides in ChCl–oxalic acid(a deep eutectic solvent(DES)) synthesized from cheap and renewable starting materials). ChCl–oxalic acid acted as both a Br?nsted acid catalyst and a reaction medium in this catalytic route. In addition, a biphasic system with methyl isobutyl ketone as an extracting reagent(DES/MIBK) to further increase furfural yield was also proposed. This processing approach for producing furfural eliminated the large energy consumption for high pressure saturated steam and the generation of acidic effluent, which was very difficult to handle. The whole catalytic system was more environmentally friendly compared with the commercial process for furfural production.  相似文献   

3.
Steeping of cellulosic materials in aqueous solution of NaOH is a common pre-treatment in several industrial processes for production of cellulose-based products, including viscose fibers. This study investigated whether the span of commonly applied process settings has the potential for process optimization regarding purity, yield, and degree of transformation to alkali cellulose. A hardwood kraft dissolving pulp was extracted with 17–20 wt% aq. NaOH at 40−50 °C. The regenerated residue of the pulp was characterized regarding its chemical composition, molecular structure, and cellulose conformation. Yield was shown to be favored primarily by low temperature and secondly by high alkali concentration. Purity of xylan developed inversely. Both purity of xylan and yield varied over the applied span of settings to an extent which makes case-adapted process optimization meaningful. Decreasing the steeping temperature by 2 °C increased xylan content in the residue with 0.13%-units over the whole span of applied alkali concentrations, while yield increased by 0.15%-units when extracting with 17 wt% aq. NaOH, and by 0.20%-units when extracting with 20 wt%. Moreover, the yield-favoring conditions resulted in a narrower molecular weight distribution. The degree of transformation via alkali cellulose to cellulose II, as determined with Raman spectroscopy, was found to be high at all extraction settings applied.  相似文献   

4.
Alternative methods were evaluated for chitin isolation from Acheta domesticus. Chemical demineralization was compared to fermentation with Lactococcus lactis, citric acid treatment, and microwave treatment, leading to a degree of demineralization of 91.1 ± 0.3, 97.3 ± 0.8, 70.5 ± 3.5, and 85.8 ± 1.3%, respectively. Fermentation with Bacillus subtilis, a deep eutectic solvent, and enzymatic digestion were tested for chitin isolation, generating materials with less than half the chitin content when compared to alkaline deproteinization. Chitosan was produced on a large scale by deacetylation of the chitinous material obtained from two selected processes: the chemical treatment and an alternative process combining L. lactis fermentation with bromelain deproteinization. The chemical and alternative processes resulted in similar chitosan content (81.9 and 88.0%), antioxidant activity (59 and 49%), and degree of deacetylation (66.6 and 62.9%), respectively. The chitosan products had comparable physical properties. Therefore, the alternative process is appropriate to replace the chemical process of chitin isolation for industrial applications.  相似文献   

5.
In the present study, subcritical water extraction (SWE) assisted with deep eutectic solvent (DES) is used to extract Lentinus edodes polysaccharides (LEP). In addition, the antioxidant activity of the polysaccharide samples was also investigated. Based on a single factor test and response surface test, the optimal extraction factors were a liquid–solid solvent of 40:1 mL/g, extraction temperature of 147.23 °C, water content of 39.76% and extraction time of 17.58 min. Under these extraction conditions, the yield of LEP was 6.26 ± 0.08%. Compared with the SWE and hot water extraction (HWE), it improved by 19.24% and 17.01%, respectively. In addition, the results of monosaccharide composition, molecular weight, FT-IR, UV and SEM confirmed that the extracts had the features of polysaccharides. Interestingly, the polysaccharides obtained with the SWE assisted with the DES procedure showed a higher DPPH scavenging activity, hydroxyl radical scavenging activity and hydrogen peroxide scavenging activity, which indicated that the polysaccharides with this method had a stronger antioxidant activity. These findings demonstrated that the SWE-assisted DES is a strong method to obtain polysaccharides from Lentinus edodes for food, biopharmaceutical and other industrial production.  相似文献   

6.
Choline chloride (ChCl) / glycolic acid (GA) deep eutectic solvent (DES) media with high water content but without any additional catalyst are introduced in furfural and 5-hydroxymethylfurfural (HMF) production. The effects of water content, reaction time, and reaction temperature are investigated with two feedstocks: a glucose/xylose mixture and birch sawdust. Based on the results, 10 equivalent quantities of water (32.9 wt.%) were revealed to be beneficial for conversions without rupturing the DES structure. The optimal reaction conditions were 160 °C and 10 minutes for the sugar mixture and 170 °C and 10 minutes for birch sawdust in a microwave reactor. High furfural yields were achieved, namely 62 % from the sugar mixture and 37.5 % from birch sawdust. HMF yields were low, but since the characterization of the solid residue of sawdust, after DES treatment, was revealed to contain only cellulose (49 %) and lignin (52 %), the treatment could be potentially utilized in a biorefinery concept where the main products are obtained from the cellulose fraction. Extraction of products into the organic phase (methyl isobutyl ketone, MIBK) during the reaction enabled the recycling of the DES phase, and yields remained high for three runs of recycling.  相似文献   

7.
采用深共熔溶剂(Deep eutectic solvents, DESs)法同步提取红景天中红景天苷和酪醇. 首先, 通过对氢键供体(HBD)、 氢键受体(HBA)及二者摩尔比和DESs含水量等因素的设计优化, 获得了同步提取红景天苷和酪醇的最佳DES为乙二醇-乙酰丙酸(摩尔比为1∶1), 含水质量分数为40%, 记为LAEG-40. 然后, 以LAEG-40作提取溶剂, 对提取方法、 料液比、 提取温度及提取时间等因素进行优化, 获得了最佳提取条件: 采用150 r/min搅拌速率提取, 料液比为1∶12.5(g/mL), 提取温度60 ℃, 提取时间65 min. 在此条件下LAEG-40对红景天苷的提取率可达(18.1268±0.1667) mg/g, 酪醇提取率可达(1.5608±0.0240) mg/g. 而在相同条件下, 以水和乙醇作为提取溶剂, 红景天苷提取率分别为(15.1221±0.1342)和(16.3425±0.0897) mg/g, 酪醇提取率分别为(1.1120±0.0389)和(1.1923±0.0423) mg/g, 可见LAEG-40的提取效果明显高于传统溶剂. 研究结果表明, LAEG-40是一种绿色、 高效的红景天苷和酪醇同步提取溶剂, 可用于替代传统溶剂.  相似文献   

8.
Borage flower (Echium amoenum), an annual herb native to the Mediterranean region, is an excellent source of anthocyanins and is widely used in various forms due to its biological activities. In the present study, a choline chloride and glycerol (CHGLY)-based natural deep eutectic solvent (NADES) was applied in order to extract the anthocyanins from borage flowers. The traditional solvents, including water, methanol, and ethanol, were used to evaluate the efficiency of CHGLY. The results showed that CHGLY was highly efficient compared to the traditional solvents, providing the highest amounts of the total anthocyanin content (TAC), total phenolic content (TPC), total flavonoid content (TFC), individual anthocyanins, and antioxidant activity (DPPH radical scavenging (DPPH) and ferric-reducing antioxidant power (FRAP) assays). The most dominant anthocyanin found in studied borage was cyanidin-3-glucoside, followed by cyanin chloride, cyanidin-3-rutinoside, and pelargonidin-3-glucoside. The bioavailability % was 71.86 ± 0.47%, 77.29 ± 0.57%, 80.22 ± 0.65%, and 90.95 ± 1.01% for cyanidin-3-glucoside, cyanidin-3-rutinoside, by pelargonidin-3-glucoside and cyanin chloride, respectively. However, cyanidin-3-glucoside was the anthocyanin compound showing the highest stability (99.11 ± 1.66%) in the gastrointestinal environment. These results suggested that choline chloride and glycerol-based NADES is not only an efficient, eco-friendly solvent for the extraction of anthocyanins but can also be used to increase the bioavailability of anthocyanins.  相似文献   

9.
The aim of this study was to analyse the effect of spontaneous microbial maceration on the release and extraction of the flavonoids and phenolics from olive leaves. Bioprofiling based on thin-layer chromatography effect-directed detection followed by ATR-FTIR spectroscopy proved to be a reliable and convenient method for simultaneous comparison of the extracts. Results show that fermentation significantly enhances the extraction of phenolic compounds and flavonoids. The polyphenolic content was increased from 6.7 µg GAE (gallic acid equivalents) to 25.5 µg GAE, antioxidants from 10.3 µg GAE to 25.3 µg GAE, and flavonoid content from 42 µg RE (rutin equivalents) to 238 µg RE per 20 µL of extract. Increased antioxidant activity of fermented ethyl acetate extracts was attributed to the higher concentration of extracted flavonoids and phenolic terpenoids, while increased antioxidant activity in fermented ethanol extract was due to increased extraction of flavonoids as extraction of phenolic compounds was not improved. Lactic acid that is released during fermentation and glycine present in the olive leaves form a natural deep eutectic solvent (NADES) with significantly increased solubility for flavonoids.  相似文献   

10.
The aim of this study was to remove 5-hydroxymethyl furfural (5-HMF) and furfural, known as fermentation inhibitors, in acid pretreated hydrolysates (APH) obtained from Scenedesmus obliquus using activated carbon. Microwave-assisted pretreatment was used to produce APH containing glucose, xylose, and fermentation inhibitors (5-HMF, furfural). The response surface methodology was applied to optimize key detoxification variables such as temperature (16.5–58.5 °C), time (0.5–5.5 h), and solid–liquid (S-L) ratio of activated carbon (0.6–7.4 w/v%). Three variables showed significant effects on the removal of fermentation inhibitors. The optimum detoxification conditions with the maximum removal of fermentation inhibitors and the minimum loss of sugars (glucose and xylose) were as follows: temperature of 36.6 °C, extraction time of 3.86 h, and S-L ratio of 3.3 w/v%. Under these conditions, removal of 5-HMF, furfural, and sugars were 71.6, 83.1, and 2.44%, respectively, which agreed closely with the predicted values. When the APH and detoxified APH were used for ethanol fermentation by S. cerevisiae, the ethanol produced was 38.5% and 84.5% of the theoretical yields, respectively, which confirmed that detoxification using activated carbon was effective in removing fermentation inhibitors and increasing fermentation yield without significant removal of fermentable sugars.  相似文献   

11.
Furfural is one of the most promising precursor chemicals with an extended range of downstream derivatives. In this work, conversion of xylose to produce furfural was performed by employing p-toluenesulfonic acid (pTSA) as a catalyst in DMSO medium at moderate temperature and atmospheric pressure. The production process was optimized based on kinetic modeling of xylose conversion to furfural alongwith simultaneous formation of humin from xylose and furfural. The synergetic effects of organic acids and Lewis acids were investigated. Results showed that the catalyst pTSA-CrCl3·6H2O was a promising combined catalyst due to the high furfural yield (53.10%) at a moderate temperature of 120 °C. Observed kinetic modeling illustrated that the condensation of furfural in the DMSO solvent medium actually could be neglected. The established model was found to be satisfactory and could be well applied for process simulation and optimization with adequate accuracy. The estimated values of activation energies for xylose dehydration, condensation of xylose, and furfural to humin were 81.80, 66.50, and 93.02 kJ/mol, respectively.  相似文献   

12.
As a new environmentally friendly separation technology, deep eutectic solvent based aqueous two‐phase systems are extensively applied in various fields. Herein, we review recent advances in this field and highlight the possible directions of future developments. This article focuses on the effects of deep eutectic solvent and inorganic salts on the phase equilibrium, the microstructure of deep eutectic solvent based aqueous two‐phase systems, the applications of deep eutectic solvent based aqueous two‐phase systems in separation (proteins, biopolymers, saponins, and organic acids), and removal and recovery technologies for deep eutectic solvent from aqueous two‐phase systems.  相似文献   

13.
Polysaccharides, which can be affected by different preparations, play a crucial role in the biological function of Paecilomyces hepiali (PHPS) as a health food. To explore high-valued polysaccharides and reduce the negative influence of human involvement, a green tailorable deep eutectic solvent (DES) was applied to optimize the extraction of polysaccharides (PHPS-D), followed by the evaluation of the structural properties and immunomodulation by comparison with the hot-water method (PHPS-W). The results indicated that the best system for PHPS-D was a type of carboxylic acid-based DES consisting of choline chloride and succinic acid in the molar ratio of 1:3, with a 30% water content. The optimal condition was as follows: liquid–solid ratio of 50 mL/g, extraction temperature of 85 °C, and extraction time of 1.7 h. The actual PHPS-D yield was 12.78 ± 0.17%, which was obviously higher than that of PHPS-W. The structural characteristics suggested that PHPS-D contained more uronic acid (22.34 ± 1.38%) and glucose (40.3 ± 0.5%), with a higher molecular weight (3.26 × 105 g/mol) and longer radius of gyration (78.2 ± 3.6 nm), as well as extended chain conformation, compared with PHPS-W, and these results were confirmed by AFM and SEM. Immunomodulatory assays suggested that PHPS-D showed better performance than PHPS-W regarding pinocytic activity and the secretion of NO and pro-inflammatory cytokines (IL-6, TNF-α and IL-1β) by activating the corresponding mRNA expression in RAW264.7 cells. This study showed that carboxylic acid-based DES could be a promising tailorable green system for acidic polysaccharide preparation and the valorization of P. hepiali in functional foods.  相似文献   

14.
《Analytical letters》2012,45(14):2443-2450
Biodiesel was pretreated by the esterification of palmitic acid over Brønsted–Lowry acid-based deep eutectic solvents. The optimal deep eutectic solvent was synthesized from choline chloride and trichloroacetic acid (1:1), and the methanol to deep eutectic solvent ratio was 10% by mass. The reaction was optimized at a methanol/palmitic acid ratio of 50:1 at 80°C for 120 min. Under the optimized conditions, good calibration curves were obtained at phenolic acid concentrations ranging from 10.0 to 500.0 µg/mL. The recoveries ranged from 99.7% to 104.2%, and the interday and intraday relative standard deviations were less than 5%. The conversion rate was 94.6%, suggesting deep eutectic solvents will find applications in the preparation of biodiesel.  相似文献   

15.
In recent years, green extraction of bioactive compounds from herbal medicines has generated widespread interest. Deep eutectic solvents (DES) have widely replaced traditional organic solvents in the extraction process. In this study, the efficiencies of eight DESs in extracting flavonoids from Acanthopanax senticosus (AS) were compared. Response surface methodology (RSM) was employed to optimize the independent variable including ultrasonic power, water content, solid-liquid ratio, extraction temperature, and extraction time. DES composed of glycerol and levulinic acid (1:1) was chosen as the most suitable extraction medium. Optimal conditions were ultrasonic power of 500 W, water content of 28%, solid-liquid ratio of 1:18 g·mL−1, extraction temperature of 55 °C, and extraction time of 73 min. The extraction yield of total flavonoids reached 23.928 ± 0.071 mg·g−1, which was 40.7% higher compared with ultrasonic-assisted ethanol extraction. Macroporous resin (D-101, HPD-600, S-8 and AB-8) was used to recover flavonoids from extracts. The AB-8 resin showed higher adsorption/desorption performance, with a recovery rate of total flavonoids of up to 71.56 ± 0.256%. In addition, DES solvent could efficiently be reused twice. In summary, ultrasonic-assisted DES combined with the macroporous resin enrichment method is exceptionally effective in recovering flavonoids from AS, and provides a promising environmentally friendly and recyclable strategy for flavonoid extraction from natural plant sources.  相似文献   

16.
Dispersive liquid–liquid microextraction using deep eutectic solvents, as novel extraction solvents, was developed for the separation, preconcentration, and determination of chlorophenol, 2,3-dihydroxybenzoic acid, p-cresol, 4-chlorophenol, 2,4-dichlorophenol, and 2,4,6-trichlorophenol in vegetable oil. Seven deep eutectic solvents composed of choline chloride and different hydrogen bond donors (ethyl glycol, glycerol, 1,2-butanediol, 1,4-butanediol, 1,6-hexanediol, urea, and acetic acid) were characterized. The deep eutectic solvents formed by choline chloride-1,6-hexanediol in a 1:2 molar ratio provided the highest extraction efficiency. The sonication time, deep eutectic solvent volume, and disperser solvent were optimized. Under the optimal conditions of a sonication time of 11?min, a deep eutectic solvent volume of 90?µL, and acetone as the disperser solvent, extraction recoveries from 76.1 to 88.3% were obtained with 8.46 to 9.46 enrichment factors and the limits of detection exceeding 0.1?µg/mL with the relative standard deviations from 1.0 to 3.5%. This method using dispersive liquid–liquid microextraction with deep eutectic solvents is simple and provides high enrichment.  相似文献   

17.
A comparative study of the metal emulsion-based synthesis of Sn-based materials in two different types of molten salts (namely LiCl–KCl–CsCl and LiNO3-NaNO3-KNO3 eutectics) is presented, and the properties of Sn, Sn-Cu and Sn-Cu-Zn microsphere phase change materials prepared in chloride salts are evaluated by differential scanning calorimetry (DSC) to understand the effect of element doping. Despite a high ultrasonic power (e.g., 600 W or above) being required for dispersing liquid Sn in the chloride system, well-shaped Sn microspheres with a relatively narrow size range, e.g., about 1 to 15 µm or several micrometers to around 30 µm, can be prepared by adjusting the ultrasonic power (840–1080 W), sonication time (5–10 min) and the volume ratio of salts to metal (25:1–200:1). Such a method can be extended to the synthesis of Sn-based alloy microspheres, e.g., Sn-Cu and Sn-Cu-Zn microspheres. In the nitrate system, however, a very low ultrasonic power (e.g., 12 W) can be used to disperse liquid Sn, and the particles obtained are much smaller. At low ultrasonic power (e.g., 12 W), the particle size is generally less than 10 or 4 µm when the sonication time reaches 2 or 5 min, and at high ultrasonic power, it is typically in the range of hundreds of nanometers to 2 µm, regardless of the change in ultrasonic power (480–1080 W), irradiation time (5–10 min), or volume ratio of salts to metal (25:1–1000:1). In addition, the appearance of a SnO phase in the products prepared under different conditions hints at the occurrence of a reaction between Sn droplets and O2 in situ generated by the ultrasound-induced decomposition of nitrates, and such an interfacial reaction is believed to be responsible for these differences observed in two different molten salt systems. A DSC study of Sn, Sn-Cu, and Sn-Cu-Zn microspheres encapsulated in SiO2 reveals that Cu (0.3–0.9 wt.%) or Cu-Zn (0.9 wt.% Cu and 0.6% Zn) doping can raise the onset freezing temperature and thus suppress the undercooling of Sn, but a broad freezing peak observed in these doped microspheres, along with a still much higher undercooling compared to those of reported Sn-Cu or Sn-Cu-Zn solders, suggests the existence of a size effect, and that a low temperature is still needed for totally releasing latent heat. Since the chloride salts can be recycled by means of the evaporation of water and are stable at high temperature, our results indicate that the LiCl–KCl–CsCl salt-based metal emulsion method might also serve as an environmentally friendly method for the synthesis of other metals and their alloy microspheres.  相似文献   

18.
Blueberry wine residues produced during the wine-brewing process contain abundant anthocyanins and other bioactive compounds. To extract anthocyanins from blueberry wine residues more efficiently, a novel procedure of ultrasound-assisted deep eutectic solvent extraction (UADESE) was proposed in this work. The extraction process was optimized by response surface methodology coupled with genetic algorithm. The optimum extraction parameters to achieve the highest yield of anthocyanins (9.32 ± 0.08 mg/g) from blueberry wine residues by UADESE were obtained at water content of 29%, ultrasonic power of 380 W, extraction temperature of 55 °C, and extraction time of 40 min. The AB-8 macroporous resin combined with Sephadex LH-20 techniques was used to purify the crude extract (CE) obtained under optimum extraction conditions and analyze the anthocyanins composition by HPLC-ESI-MS/MS. The cyanidin-3-rutinoside with purity of 92.81% was obtained. The HepG2 antitumor activity of CE was better than that of the purified anthocyanins component. Moreover, CE could increase the intracellular reactive oxygen species levels and the apoptosis, and arrest HepG2 cells in the S phases. These findings provided an effective and feasible method for anthocyanins extraction, and reduced the environmental burden of this waste.  相似文献   

19.
Research advances in electropolishing, with respect to the field of metalworking, have afforded significant improvements in the surface roughness and conductivity properties of aluminum polished surfaces in ways that machine polishing and simple chemical polishing cannot. The effects of a deep eutectic medium as an acid-free electrolyte were tested to determine the potential energy thresholds during electropolishing treatments based upon temperature, experiment duration, current, and voltage. Using voltammetry and chronoamperometry tests during electropolishing to supplement representative recordings via atomic force microscopy (AFM), surface morphology comparisons were performed regarding the electropolishing efficiency of phosphoric acid and acid-free ionic liquid treatments for aluminum. This eco-friendly solution produced polished surfaces superior to those surfaces treated with industry standard acid electrochemistry treatments of 1 M phosphoric acid. The roughness average of the as-received sample became 6.11 times smoother, improving from 159 nm to 26 nm when electropolished with the deep eutectic solvent. This result was accompanied by a mass loss of 0.039 g and a 7.2 µm change in step height along the edge of the electropolishing interface, whereas the acid treatment resulted in a slight improvement in surface roughness, becoming 1.63 times smoother with an average post-electropolishing roughness of 97.7 nm, yielding a mass loss of 0.0458 g and a step height of 8.1 µm.  相似文献   

20.
A highly efficient and ecofriendly extraction method using deep eutectic solvents was developed to extract bioactive flavonoids from Abelmoschus manihot (Linn.) Medicus flowers. First, a series of deep eutectic solvents using choline chloride as hydrogen bond acceptor with different hydrogen bond donors was successfully synthesized. Then, the types of deep eutectic solvents and the extraction conditions for bioactive flavonoids (hyperoside, isoquercitrin, and myricetin) were optimized based on the flavonoids extraction efficiencies. The optimized deep eutectic solvent for hyperoside and isoquercitrin extraction was composed of choline chloride and acetic acid with a molar ratio of 1:2. The optimized deep eutectic solvent for myricetin extraction was composed of one mole of choline chloride and two moles of methacrylic acid. The optimal extraction conditions were set as: solid to solvent ratio, 35:1 (mg/mL); extraction time, 30 min; extraction temperature, 30°C. Qualitative and quantitative analysis were performed using ultra high performance liquid chromatography with tandem mass spectrometry and high‐performance liquid chromatography. And the extraction efficiencies of hyperoside, isoquercitrin, and myricetin under optimal extraction conditions were calculated as 11.57, 5.64, and 1.11 mg/g, much higher than those extracted by traditional extraction solvents. Therefore, the prepared deep eutectic solvents can be selected as alternative solvent to extract bioactive flavonoids.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号