首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
构建了亮氨酸脱氢酶(LeuDH)催化的底物偶联反应体系, 打破氧化脱氨反应平衡, 同时制得高附加值的α-酮异己酸(α-KIC)和L-2-氨基丁酸, 并实现辅酶NAD+的高效循环再生. 基于LeuDH的底物专一性和催化动力学参数, 考察了不同酮酸底物对于底物偶联反应效率的影响, 选择转化率最高的2-丁酮酸作为偶联底物, 使α-KIC产率由单步氧化反应的2.75%提高至66.82%. 通过考察底物浓度、 pH值、 NH4+浓度和辅酶NAD+浓度等反应条件对偶联反应效率的影响, 使α-KIC产率进一步提高至83.25%, 同时辅酶NAD+的总转化数(TTN)达到5.88×105. 通过改变底物L-亮氨酸和2-丁酮酸的摩尔比, 能够将α-KIC的产率进一步提高至92.74%.  相似文献   

2.
Herein, we describe the development of one-pot transformation of α-ethoxy derivatives of phosphorus analogs of protein and non-protein α-amino acids into biologically important N-protected 1-aminobisphosphonates. The proposed strategy, based on the three-component reaction of 1-(N-acylamino)-1-ethoxyphosphonates with triphenylphosphonium tetrafluoroborate and triethyl phosphite, facilitates good to excellent yields under mild reaction conditions. The course of the reaction was monitored by 31P NMR spectroscopy, allowing the identification of probable intermediate species, thus making it possible to propose a reaction mechanism. In most cases, there is no need to use a catalyst to provide transformation efficiency, which increases its attractiveness both in economic and ecological terms. Furthermore, we demonstrate that the one-pot procedure can be successfully applied for the synthesis of structurally diverse N-protected bisphosphonic analogs of α-amino acids. As shown, the indirect formation of the corresponding phosphonium salt as a reactive intermediate during the conversion of 1-(N-acylamino)-1-ethoxyphosphonate into a 1-aminobisphosphonate derivative is a crucial component of the developed methodology.  相似文献   

3.
Using the classical Ugi four-component reaction to fuse an amine, ketone, carboxylic acid, and isocyanide, here we prepared a short library of N-alkylated α,α-dialkylglycine derivatives. Due to the polyfunctionality of the dipeptidic scaffold, this highly steric hindered system shows an interesting acidolytic cleavage of the C-terminal amide. In this regard, we studied the structure-acid lability relationship of the C-terminal amide bond (cyclohexylamide) of N-alkylated α,α-dialkylglycine amides 1a–n in acidic media and, afterward, it was established that the most important structural features related to its cleavage. Then, it was demonstrated that electron-donating effects in the aromatic amines, flexible acyl chains (Gly) at the N-terminal and the introduction of cyclic compounds into dipeptide scaffolds, increased the rate of acidolysis. All these effects are related to the ease with which the oxazolonium ion intermediate forms and they promote the proximity of the central carbonyl group to the C-terminal amide, resulting in C-terminal amide cleavage. Consequently, these findings could be applied for the design of new protecting groups, handles for solid-phase synthesis, and linkers for conjugation, due to its easily modulable and the fact that it allows to fine tune its acid-lability.  相似文献   

4.
β-Hydroxy sulfones are important in organic synthesis. The simplest method of β-hydroxy sulfones synthesis is the hydrogenation of β-keto sulfones. Herein, we report the reducing properties of alkyl aluminum compounds R3Al (R = Et, i-Bu, n-Bu, t-Bu and n-Hex); i-Bu2AlH; Et2AlCl and EtAlCl2 in the hydrogenation of β-keto sulfones. The compounds i-Bu2AlH, i-Bu3Al and Et3Al are the at best reducing agents of β-keto sulfones to β-hydroxy sulfones. In reactions of β-keto sulfones with aluminum trialkyls, hydroalumination products with β-hydroxy sulfone ligands [R2AlOC(C6H5)CH2S(O)2(p-R1C6H4]n [where n = 1,2; 2aa: R = i-Bu, R1 = CH3; 2ab: R = i-Bu, R1 = Cl; 2ba: R = Et, R1 = CH3; 2bb: R = Et, R1 = Cl] and {[Et2AlOC(C6H5)CH2S(O)2(p-ClC6H4]∙Et3Al}n 3bb were obtained. These complexes in the solid state have a dimeric structure, while in solutions, they appear as equilibrium monomer–dimer mixtures. The hydrolysis of both the isolated 2aa, 2ab, 2ba, 2bb and 3bb and the postreaction mixtures quantitatively leads to pure racemic β-hydroxy sulfones. Hydroalumination reaction of β-keto sulfones with alkyl aluminum compounds and subsequent hydrolysis of the complexes is a simple and very efficient method of β-hydroxy sulfones synthesis.  相似文献   

5.
为了探索α-氨基酸及其酯化物的侧链R基团对其与环糊精非共价复合物结合强度的影响, 将一定摩尔比的β-环糊精(β-CD)分别与L型正缬氨酸(n-Val)、 亮氨酸(Leu)、 苯丙氨酸(Phe)、 天冬氨酸(Asp)、 天冬氨酸-4-苄酯(Asp-4-benzyl ester)和天冬氨酸-4-叔丁酯(Asp-4-t-butyl ester)在室温下混合, 反应平衡后采用电喷雾电离质谱进行竞争反应检测, 并以改进的质谱滴定结合曲线拟合法计算结合常数. 结果表明, 它们均可形成摩尔比为1∶1的非共价复合物. 在2组竞争反应中, 复合物的结合强度顺序分别为[β-CD∶Asp-4-benzyl ester+H]+>[β-CD∶Asp-4-t-butyl ester+H]+>[β-CD∶Asp+H]+以及[β-CD∶Phe+H]+>[β-CD∶Leu+H]+>[β-CD∶n-Val+H]+. 质谱滴定曲线拟合法测得[β-CD∶n-Val+H]+, [β-CD∶Asp+H]+, [β-CD∶Asp-4-t-butyl ester+H]+, [β-CD∶Asp-4-benzyl ester+H]+, [β-CD∶Leu+H]+和[β-CD∶Phe+H]+的稳定常数(lgKst)分别为1.81, 2.54, 3.14, 3.26, 3.36和3.67, 结合强度依次增强. 竞争反应的定性分析结果与质谱滴定定量法测得结合强度结果的趋势一致. 由于所选用的α-氨基酸及其酯化物客体的羧基端(—COOH)和氨基端(—NH2)均相同, 且都为亲水基团, 仅有侧链R基团不同, 因此在溶液中客体分子受疏水驱动与β-CD主体靠近并结合时, 侧链R基团的疏水力和极性2个因素起重要作用. 由于客体分子体积小, 其碳端的羧基还可与β-CD大口或小口边缘的羟基形成氢键, 使复合物更加稳定.  相似文献   

6.
(Ph3C)[BPh(F)4]-catalyzed Hosomi-Sakurai allylation of allylsilanes with β,γ-unsaturated α-ketoesters has been developed to give γ,γ-disubstituted α-ketoesters in high yields with excellent chemoselectivity. Preliminary mechanistic studies suggest that trityl cation dominates the catalysis, while the silyl cation plays a minor role.  相似文献   

7.
An Ugi three-component reaction using preformed α-phosphorated N-tosyl ketimines with different isocyanides in the presence of a carboxylic acid affords tetrasubstituted α-aminophosphonates. Due to the high steric hindrance, the expected acylated amines undergo a spontaneous elimination of the acyl group. The reaction is applicable to α-aryl ketimines bearing a number of substituents and several isocyanides. In addition, the densely substituted α-aminophosphonate substrates showed in vitro cytotoxicity, inhibiting the growth of carcinoma human tumor cell line A549 (carcinomic human alveolar basal epithelial cell).  相似文献   

8.
The hybrid peptides consisting of α and β-amino acids show great promise as peptidomimetics that can be used as therapeutic agents. Therefore, the development of new unnatural amino acids and the methods of their incorporation into the peptide chain is an important task. Here, we described our investigation of the possibility of 5-amino-3-methyl-isoxazole-4-carboxylic acid (AMIA) application in the solid phase peptide synthesis. This new unnatural β-amino acid, presenting various biological activities, was successfully coupled to a resin-bound peptide using different reaction conditions, including classical and ultrasonic agitated solid-phase synthesis. All the synthesized compounds were characterized by tandem mass spectrometry. The obtained results present the possibility of the application of this β-amino acid in the synthesis of a new class of bioactive peptides.  相似文献   

9.
α-Galacto-oligosaccharides (α-GOSs) have great functions as prebiotics and therapeutics. This work established the method of batch synthesis of α-GOSs by immobilized α-galactosidase for the first time, laying a foundation for industrial applications in the future. The α-galactosidase from Aspergillus niger L63 was immobilized as cross-linked enzyme aggregates (CLEAs) nano-biocatalyst through enzyme precipitating and cross-linking steps without using carriers. Among the tested agents, the ammonium sulfate showed high precipitation efficacy and induced regular structures of α-galactosidase CLEAs (Aga-CLEAs) that had been analyzed by scanning electron microscopy and Fourier-transform infrared spectroscopy. Through optimization by response surface methodology, the ammonium sulfate-induced Aga-CLEAs achieved a high activity recovery of around 90% at 0.55 U/mL of enzymes and 36.43 mM glutaraldehyde with cross-linking for 1.71 h. Aga-CLEAs showed increased thermal stability and organic solvent tolerance. The storage ability was also improved since it maintained 74.5% activity after storing at 4 °C for three months, significantly higher than that of the free enzyme (21.6%). Moreover, Aga-CLEAs exhibited excellent reusability in the α-GOSs synthesis from galactose, retaining above 66% of enzyme activity after 10 batch reactions, with product yields all above 30%.  相似文献   

10.
α-Functionalized α,β-unsaturated aldehydes is an important class of compounds, which are widely used in fine organic synthesis, biology, medicine and pharmacology, chemical industry, and agriculture. Some of the 2-substituted 2-alkenals are found to be the key metabolites in plant and animal cells. Therefore, the development of efficient methods for their synthesis attracts the attention of organic chemists. This review focusses on the recent advances in the synthesis of 2-functionally substituted 2-alkenals. The approaches to the preparation of α-alkyl α,β-unsaturated aldehydes are not included in this review.  相似文献   

11.
Rapidly growing antimicrobial resistance among clinically important bacterial and fungal pathogens accounts for high morbidity and mortality worldwide. Therefore, it is critical to look for new small molecules targeting multidrug-resistant pathogens. Herein, in this paper we report a synthesis, ADME properties, and in vitro antimicrobial activity characterization of novel thiazole derivatives bearing β-amino acid, azole, and aromatic moieties. The in silico ADME characterization revealed that compounds 1–9 meet at least 2 Lipinski drug-like properties while cytotoxicity studies demonstrated low cytotoxicity to Vero cells. Further in vitro antimicrobial activity characterization showed the selective and potent bactericidal activity of 2a–c against Gram-positive pathogens (MIC 1–64 µg/mL) with profound activity against S. aureus (MIC 1–2 µg/mL) harboring genetically defined resistance mechanisms. Furthermore, the compounds 2a–c exhibited antifungal activity against azole resistant A. fumigatus, while only 2b and 5a showed antifungal activity against multidrug resistant yeasts including Candida auris. Collectively, these results demonstrate that thiazole derivatives 2a–c and 5a could be further explored as a promising scaffold for future development of antifungal and antibacterial agents targeting highly resistant pathogenic microorganisms.  相似文献   

12.
贾红绍  乔保坤  江智勇 《化学学报》2021,79(12):1477-1480
通过可见光驱动光氧化还原催化, 发展了一种新颖、便利的β-氟代-α-氨基酸衍生物的合成方法. 以非金属的二氰基吡嗪衍生物(DPZ)为光催化剂, 以易于制备的N-芳基甘氨酸酯和芳基乙酸氧化还原酯为原料, 通过单电子氧化还原分别生成酯基取代α-氨烷基自由基及α-氟代苄基自由基. 经过高反应活性自由基的交叉偶联, 高产率地得到目标产物. 该方法由于氧化还原中性反应途径而无需额外的氧化剂或还原剂, 且属于绿色、可持续的有机催化合成策略.  相似文献   

13.
The neuronal nicotinic acetylcholine receptors (nAChRs) belong to the ligand-gated ion channel (GLIC) group, presenting a crucial role in several biological processes and neuronal disorders. The α4β2 and α7 nAChRs are the most abundant in the central nervous system (CNS), being involved in challenging diseases such as epilepsy, Alzheimer’s disease, schizophrenia, and anxiety disorder, as well as alcohol and nicotine dependencies. In addition, in silico-based strategies may contribute to revealing new insights into drug design and virtual screening to find new drug candidates to treat CNS disorders. In this context, the pharmacophore maps were constructed and validated for the orthosteric sites of α4β2 and α7 nAChRs, through a docking-based Comparative Intermolecular Contacts Analysis (dbCICA). In this sense, bioactive ligands were retrieved from the literature for each receptor. A molecular docking protocol was developed for all ligands in both receptors by using GOLD software, considering GoldScore, ChemScore, ASP, and ChemPLP scoring functions. Output GOLD results were post-processed through dbCICA to identify critical contacts involved in protein-ligand interactions. Moreover, Crossminer software was used to construct a pharmacophoric map based on the most well-behaved ligands and negative contacts from the dbCICA model for each receptor. Both pharmacophore maps were validated by using a ROC curve. The results revealed important features for the ligands, such as the presence of hydrophobic regions, a planar ring, and hydrogen bond donor and acceptor atoms for α4β2. Parallelly, a non-planar ring region was identified for α7. These results can enable fragment-based drug design (FBDD) strategies, such as fragment growing, linking, and merging, allowing an increase in the activity of known fragments. Thus, our results can contribute to a further understanding of structural subunits presenting the potential for key ligand-receptor interactions, favoring the search in molecular databases and the design of novel ligands.  相似文献   

14.
Diabetes mellitus is a metabolic disorder and is a global challenge to the current medicinal chemists and pharmacologists. This research has been designed to isolate and evaluate antidiabetic bioactives from Fragaria indica. The crude extracts, semi-purified and pure bioactives have been used in all in vitro assays. The in vitro α-glucosidase, α-amylase and DPPH free radical activities have been performed on all plant samples. The initial activities showed that ethyl acetate (Fi.EtAc) was the potent fraction in all the assays. This fraction was initially semi-purified to obtain Fi.EtAc 1–3. Among the semi-purified fractions, Fi.EtAc 2 was dominant, exhibiting potent IC50 values in all the in vitro assays. Based on the potency and availability of materials, Fi.EtAc 2 was subjected to further purification to obtain compounds 1 (2,4-dichloro-6-hydroxy-3,5-dimethoxytoluene) and 2 (2-methyl-6-(4-methylphenyl)-2-hepten-4-one). The two isolated compounds were characterized by mass and NMR analyses. The compounds 1 and 2 showed excellent inhibitions against α-glucosidase (21.45 for 1 and 15.03 for 2 μg/mL), α-amylase (17.65 and 16.56 μg/mL) and DPPH free radicals (7.62 and 14.30 μg/mL). Our study provides baseline research for the antidiabetic bioactives exploration from Fragaria indica. The bioactive compounds can be evaluated in animals-based antidiabetic activity in future.  相似文献   

15.
Heterocyclic moieties, especially five and six-membered rings containing nitrogen, oxygen or sulfur atoms, are broadly distributed in nature. Among them, synthetic and natural alike are pharmacologically active compounds and have always been at the forefront of attention due to their pharmacological properties. Heterocycles can be divided into different groups based on the presence of characteristic structural motifs. The presence of β-amino acid and heterocyclic core in one compound is very interesting; additionally, it very often plays a vital role in their biological activity. Usually, such compounds are not considered to be chemicals containing a β-amino acid motif; however, considering them as this class of compounds may open new routes of their preparation and application as new drug precursors or even drugs. The possibility of their application as nonproteinogenic amino acid residues in peptide or peptide derivatives synthesis to prepare a new class of compounds is also promising. This review highlights the actual state of knowledge about β-amino acid moiety-containing heterocycles presenting antiviral, anti-inflammatory, antibacterial compounds, anaplastic lymphoma kinase (ALK) inhibitors, as well as agonist and antagonists of the receptors.  相似文献   

16.
A new, interdisciplinary research area has emerged known as bioorganometallic chemistry. It focuses on the introduction of organometallic fragments into biomolecules (see, for example, structure on the right). “Classical” α-amino acid and peptide ligands have proven particularly versatile, and provide access to compounds that display interesting stereochemistry. α-Amino acids and peptides can be synthesized, labeled, stabilized, or activated by organometallic fragments.  相似文献   

17.
谢君瑶  曾小明  罗美明 《化学学报》2021,79(9):1118-1122
三组分双官能化反应是一种高效、简便构建C―C键、C―X键的方式. 双键广泛存在于众多有机化合物中, 对双键的双官能化反应研究有巨大的应用潜力. 本工作以Ni(COD)2为催化剂, 以芳基溴化镁、芳基溴化物为芳基化试剂, 实现了3-芳基-2-丙烯醛亚胺中碳碳双键的双芳基化反应. 该反应建立了一个新的镍催化α,β-不饱和醛的α,β-双芳基化方法, 可以高度区域选择性地向底物分子中引入两个不同取代的芳环, 得到多种2,3,3-三芳基丙醛骨架的产物. 利用这一反应作为核心步骤实现了天然产物Quebecol的简便合成. 机理研究表明, 该反应可能经历了亲核加成、金属交换、还原消除的历程.  相似文献   

18.
Hypoxia-inducible factor-1α (HIF-1α) is widely distributed in human cells, and it can form different signaling pathways with various upstream and downstream proteins, mediate hypoxia signals, regulate cells to produce a series of compensatory responses to hypoxia, and play an important role in the physiological and pathological processes of the body, so it is a focus of biomedical research. In recent years, various types of HIF-1α inhibitors have been designed and synthesized and are expected to become a new class of drugs for the treatment of diseases such as tumors, leukemia, diabetes, and ischemic diseases. This article mainly reviews the structure and functional regulation of HIF-1α, the modes of action of HIF-1α inhibitors, and the application of HIF-1α inhibitors during the treatment of diseases.  相似文献   

19.
The Scedosporium genus is an emerging pathogen with worldwide prevalence and high mortality rates that gives multidrug resistance to antifungals; therefore, pharmacological alternatives must be sought for the treatment of diseases caused by this fungus. In the present project, six new α-aminophosphates were synthesized by the Kabachnik–Fields multicomponent reaction by vortex agitation, and six new monohydrolyzed α-aminophosphonic acids were synthesized by an alkaline hydrolysis reaction. Antifungal activity was evaluated using the agar diffusion method as an initial screening to determine the most active compound compared to voriconazole; then it was evaluated against 23 strains of the genus Scedosporium following the M38-A2 protocol from CLSI (activity range: 648.76–700 µg/mL). Results showed that compound 5f exhibited the highest antifungal activity according to the agar diffusion method (≤1 mg/mL). Cytotoxicity against healthy COS-7 cells was also evaluated by the MTT assay and it was shown that compound 5f exhibits a lower toxicity in comparison to voriconazole at the same concentration (1000 µM). A docking study was conducted afterwards, showing that the possible mechanism of action of the compound is through the inhibition of allosteric 14-α-demethylase. Taking these results as a basis, 5f is presented as a compound with attractive properties for further studies.  相似文献   

20.
The reactivity of cyclic α-diazo monocarbonyl compounds differs from that of their acyclic counterparts. In this review, we summarize the current literature available on the synthesis and synthetic applications of three major classes of cyclic α-diazo monocarbonyl compounds: α-diazo ketones, α-diazo lactones and α-diazo lactams.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号