首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
EF-1 is a novel peptide derived from two bacteriocins, plantaricin E and plantaricin F. It has a strong antibacterial activity against Escherichia coli and with negligible hemolytic effect on red blood cells. However, the chemical synthesis of EF-1 is limited by its high cost. In this study, we established a heterologous expression of EF-1 in Pichia pastoris. The transgenic strain successfully expressed hybrid EF-1 peptide, which had a molecular weight of ~5 kDa as expected. The recombinant EF-1 was purified by Ni2+ affinity chromatography and reversed-phase high performance liquid chromatography (RP-HPLC), which achieved a yield of 32.65 mg/L with a purity of 94.9%. The purified EF-1 exhibited strong antimicrobial and bactericidal activities against both Gram-positive and -negative bacteria. Furthermore, propidium iodide staining and scanning electron microscopy revealed that EF-1 can directly induce cell membrane permeabilization of E. coli. Therefore, the hybrid EF-1 not only preserves the individual properties of the parent peptides, but also acquires the ability to disrupt Gram-negative bacterial membrane. Meanwhile, such an expression system can reduce both the time and cost for large-scale peptide production, which ensures its potential application at the industrial level.  相似文献   

2.
A novel strategy for constructing multiple joined genes of acidic partner-mediated antimicrobial peptide is described. This strategy allows the expression of antimicrobial peptide byEscherichia coli in a stable form and with high yield. Cecropin A (1–8)-melittin (1–10) (CAME) hybrid peptide was selected as a model of antimicrobial peptide. An acidic fragment from magainin intervening sequence was fused to the antimicrobial peptide as a partner to neutralize the lethal effects on the host cells. Multiple copies of the fusion peptide gene were tandemly linked and cloned into the expression vector pET21a. Multimers were expressed at high levels, reaching up to 36% of total cell proteins, and expression levels were proportional to the degree of multimerization. The fusion proteins were mainly expressed as inclusion bodies, probably owing to cysteine residues in the multimers. The target CAME peptide was obtained by cleaving the multimers with cyanogen bromide and purified by cation-exchange chromatography. Recombinant CAME peptide showed strong antimicrobial activities against both Gram-negative and -positive bacteria. These results might provide an efficient solution for high-level expression of various kinds of antimicrobial peptides that are toxic to the host.  相似文献   

3.
Brevinin-2R, a member of a new family of antimicrobial peptides isolated from the skin of Rana ridibunda, displays antimicrobial activity against bacteria and fungi. In this study, we have used an assembly PCR method for the fast and extremely accurate synthesis of the brevinin-2R gene. A total of six primers were assembled in a single step PCR, and the assembly was then amplified by PCR to produce the final gene. The synthetic gene was cloned into the pET32a (+) vector to allow the expression of brevinin-2R as a Trx fusion protein in Escherichia coli. The results indicated that the expression level of the fusion protein could reach up to 25% of the total cell proteins. The expression products could be easily purified by Ni-NTA chromatography and released from the fusion protein by factor Xa protease. The peptide displayed antimicrobial activity similar to that of the purified brevinin that was reported earlier. This method allows the fast synthesis of a gene that optimized the overexpression in the E. coli system and production of sufficiently large amounts of peptide for functional and structural characterizations.  相似文献   

4.
The increase of multidrug-resistant pathogens and the restriction on the use antibiotics due to its side effects have drawn attention to the search for possible alternatives. Bacteriocins are small antimicrobial peptides produced by numerous bacteria. Much interest has been focused on bacteriocins because they exhibit inhibitory activity against pathogens. Lactic acid bacteria possess the ability to synthesize antimicrobial compounds (like bacteriocin) during their growth. In this study, an antibacterial substance (bacteriocin PJ4) produced by Lactobacillus helveticus PJ4, isolated from rat gut microflora, was identified as bacteriocin. It was effective against wide assay of both Gram-positive and Gram-negative bacteria involved in various diseases, including Escherichia coli, Bacillus subtilis, Pseudomonas aeruginosa, Enterococcus faecalis, and Staphylococcus aureus. The antimicrobial peptide was relatively heat-resistant and also active over a wide pH range of 2–10. It has been partially purified to homogeneity using ammonium sulfate precipitation and size exclusion chromatography and checked on reverse-phase high-performance liquid chromatography. Sodium dodecyl sulfate–polyacrylamide gel electrophoresis of bacteriocin PJ4 purified through size exclusion chromatography resolved ~6.5 kDa protein with bacteriocin activity. The peptide is inactivated by proteolytic enzymes, trypsin, and lipase but not when treated with catalase, α-amylase, and pepsin. It showed a bactericidal mode of action against the indicator strains E. coli MTCC443, Lactobacillus casei MTCC1423, and E. faecalis DT48. Such characteristics indicate that this bacteriocin may be a potential candidate for alternative agents to control important pathogens.  相似文献   

5.
α-螺旋型多肽HPRP-A1由15个氨基酸残基组成,来源于幽门螺杆菌核糖体蛋白L1的N端.本研究以HPRP-A1为模板,在其非极性面中心通过单个氨基酸定点取代的方法,形成一系列疏水性不同的多肽类似物,系统地研究疏水性对α-螺旋型多肽生物活性的影响.结果显示,多肽疏水性及所带净电荷对多肽生物活性起着重要的作用;HPRP-A1及疏水性相对较高的多肽类似物具有较好的广谱抗菌活性(包括革兰氏阳性菌、革兰氏阴性菌及真菌),但也有相对较高的溶血活性;多肽的疏水性与所带净电荷的变化对多肽抗细菌活性与抗真菌活性所产生的影响有着相似的变化趋势和程度.这意味着多肽与细菌的作用机制和多肽与真菌的作用机制存在一定的相关性.多肽对细菌和真菌的抗菌活性存在特异性,为设计出具有临床应用前景的抗菌肽药物奠定了基础.  相似文献   

6.
Porcine NK-Lysine (PNKL) is a new antimicrobial peptide (AMP) identified in the small intestine. In this study, PNKL protein was obtained through heterologous expression in Escherichia coli and was estimated by SDS-PAGE at 33 kDa. The antibacterial activities of PNKL were determined using various bacterial strains and showed broad-spectrum antimicrobial activity against Gram-negative and Gram-positive bacteria. Furthermore, E. coli K88-challenged IPEC-J2 cells were used to determine PNKL influences on inflammatory responses. Hemolytic assays showed that PNKL had no detrimental impact on cell viability. Interestingly, PNKL elevated the viability of IPEC-J2 cells exposure to E. coli K88. PNKL significantly decreased the cell apoptosis rate, and improved the distribution and abundance of tight junction protein ZO-1 in IPEC-J2 cells upon E. coli K88-challenge. Importantly, PNKL not only down regulated the expressions of inflammatory cytokines such as the IL-6 and TNF-α, but also down regulated the expressions of NF-κB, Caspase3, and Caspase9 in the E. coli K88-challenged cells. These results suggest a novel function of natural killer (NK)-lysin, and the anti-bacterial and anti-inflammatory properties of PNKL may allow it a potential substitute for conventionally used antibiotics or drugs.  相似文献   

7.
The emergence of drug-resistant bacteria emphasizes the urgent need for novel antibiotics. The antimicrobial peptide TS shows extensive antibacterial activity in vitro and in vivo, especially in gram-negative bacteria; however, its antibacterial mechanism is unclear. Here, we find that TS without hemolytic activity disrupts the integrity of the outer bacterial cell membrane by displacing divalent cations and competitively binding lipopolysaccharides. In addition, the antimicrobial peptide TS can inhibit and kill E. coli by disintegrating the bacteria from within by interacting with bacterial DNA. Thus, antimicrobial peptide TS’s multiple antibacterial mechanisms may not easily induce bacterial resistance, suggesting use as an antibacterial drug to be for combating bacterial infections in the future.  相似文献   

8.
Well-organized nanocrystalline hydroxyapatite nanoparticles garlanded poly(dl-lactide-co-glycolide) (PLGA) ultrafine fibers with efficient antibacterial properties are of great interest in the development of new products. In the present study, hydroxyapatite doped PLGA ultrafine fibers incorporated with copper oxide nanocrystals were fabricated via two step methodology. Primarily; copper oxide nanocrystals were synthesized using wet chemical method. Then the as-synthesized nanocrystals were used for the preparation of composite fibers using electrospinning technique. The properties of pure and composite ultrafine fibers were characterized using X-ray diffraction, scanning electron microscopy, energy dispersive X-ray analysis, and electron probe mapping analysis. The in vitro antimicrobial activity of synthesized pure and hydroxyapatite doped PLGA ultrafine fibers was investigated against model organism Escherichia coli (gram negative) using optical density method and morphological damage was observed by TEM. Ultrafine fibers with average diameter ranges from 1.0 to 1.2 μm were obtained. Uniform distribution of hydroxyapatite was observed. Admirable antimicrobial activity against E. coli was achieved which could be attributed by the synergy between hydroxyapatite and copper oxide. In contrast to pristine PLGA, lower concentrations of hydroxyapatite–copper oxide doped PLGA nanocomposite were needed to strongly inhibit the growth of E. coli. Our results report successful preparation of hydroxyapatite–copper oxide based novel nanocomposite. The developed hybrid nanocomposite possess exceptionally good antibacterial activity against E. coli due to the synergistic effect of hydroxyapatite and copper oxide. The antimicrobial nanocomposite can be utilized for a range of bio-functional purposes such as a good candidate for water purification, antibiofouling, wound dressings and bone tissue engineering etc.  相似文献   

9.
Lysine-rich peptide, designated as KABT-AMP, was designed and synthesized to supersede the irrational use of chemical antibiotics as standard therapy. KABT-AMP is a 22-amino acid helical cationic peptide (+10) and amphipathic in nature. The antimicrobial kinetics of the peptide was ascertained in the representative strains of gram-positive, gram-negative, and fungal strains, viz., Staphylococcus aureus MTCC 2940, Escherichia coli MTCC 2939, and Candida albicans MTCC 227, respectively. KABT-AMP was synthesized by solid-phase synthesis and purified using reverse-phase high-performance liquid chromatography which resulted in >95 % purity, and matrix-assisted laser desorption/ionization time of flight revealed the mass of the peptide to be 2.8 kDa. KABT-AMP showed significant broad-spectrum antimicrobial activity against the bacterial and fungal strains analyzed in the present study with survivability of 30.8, 30.6, and 31.7 % in E. coli, S. aureus, and C. albicans, respectively, at 6 h. KABT-AMP also demonstrated antibiofilm activity against the tested biofilm forming clinical isolate, Candida tropicalis. The putative membranolytic activity of the peptide was substantiated by electron microscopic analysis. Results reveal that KABT-AMP will exhibit noteworthy antimicrobial activity against multidrug-resistant bacteria and fungus at micromolar concentrations with minimal cytotoxicity and thus could be conceived for biomedical application.  相似文献   

10.
Antimicrobial resistance requires urgent efforts towards the discovery of active antimicrobials, and the development of strategies to sustainably produce them. Defensin and defensin-like antimicrobial peptides (AMPs) are increasingly gaining pharmacological interest because of their potency against pathogens. In this study, we expressed two AMPs: defensin-d2 derived from spinach, and defensin-like actifensin from Actinomyces ruminicola. Recombinant pTXB1 plasmids carrying the target genes encoding defensin-d2 and actifensin were generated by the MEGAWHOP cloning strategy. Each AMP was first expressed as a fusion protein in Escherichia coli, purified by affinity chromatography, and was thereafter assayed for antimicrobial activity against multidrug-resistant (MDR) pathogens. Approximately 985 µg/mL and 2895 µg/mL of recombinant defensin-d2 and actifensin, respectively, were recovered with high purity. An analysis by MALDI-TOF MS showed distinct peaks corresponding to molecular weights of approximately 4.1 kDa for actifensin and 5.8 kDa for defensin-d2. An in vitro antimicrobial assay showed that MDR Pseudomonas aeruginosa and Candida albicans were inhibited at minimum concentrations of 7.5 µg/mL and 23 µg/mL for recombinant defensin-d2 and actifensin, respectively. The inhibitory kinetics of the peptides revealed cidal activity within 4 h of the contact time. Furthermore, both peptides exhibited an antagonistic interaction, which could be attributed to their affinities for similar ligands, as deduced by peptide–ligand profiling. Moreover, both peptides inhibited biofilm formation, and they exhibited no resistance potential and low hemolytic activity. The peptides also possess the ability to permeate and disrupt the cell membranes of MDR P. aeruginosa and C. albicans. Therefore, recombinant actifensin and defensin-d2 exhibit broad-spectrum antimicrobial activity and have the potential to be used as therapy against MDR pathogens.  相似文献   

11.
Novel hybrid polyvinyl butyral nanofibers have been developed for antimicrobial applications. The nanofiber mats were obtained from a needleless rod electrospinning system. The novel inorganic antibacterial agents were incorporated into the nanofibers, and their antibacterial activity was compared. The obtained nanoparticle/nanofiber hybrid mats have a good surface morphology. The results indicated that the CuO, ZnO, ZnO/TiO2, and AgNO3 nanoparticle‐incorporated nanofiber layers have excellent antibacterial activity against to Escherichia coli compared with TiO2, SnO2, and ZrO2 ones. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

12.
Mouse beta defensin-1 (mBD-1) is a cationic 37-amino acid antimicrobial peptide with three conserved cysterine disulfied bonds. It exhibits a broad antimicrobial spectrum, but mBD-1 against Candida albicans (C. albicans) and Cryptococcus neoformans (C. neoformans) is poorly understood. This study describes the mBD-1 gene, the heterologous fusion expression of the peptide in Escherichia coli, and the bioactive assay of released mature mBD-1. By constructing the expression plasmid (pET32a-mBD1), high yields of soluble mBD-1 fusion protein (0.67 g/L) could be obtained in E. coli and cleaved by enterokinase. The digested product was further purified and desalted with the final amount of pure mature mBD-1 being 0.14 g/L. Classical fungi growth inhibition assay showed clear antifungal activity against C. albicans and C. neoformans with IC50 of 5 and 2 μM, respectively. The results show that the mBD-1 control fungal colonization through hyphal induction, direct fungicidal activity, and the activity is suppressed by increasing NaCl concentration. Successful expression of the mBD-1 peptide in E. coli offers a basis for further studying its antifungal mechanisms and may provide significance in developing this peptide to an antifungal drug.  相似文献   

13.
以人工合成抗菌肽1(Synthetic antimicrobial peptide 1, SAMP1)为研究模板, 采用氨基酸序列重排、 不同的带正电荷氨基酸残基和疏水性氨基酸残基取代等方法, 设计合成了8条SAMP1类似肽. 利用生物信息学软件预测了SAMP1及其类似肽的理化性质; 采用圆二色光谱(CD)技术测定其在不同环境下二级结构的变化; 采用噻唑蓝(MTT)法测定其抗菌活性; 通过红细胞溶血实验评估了这些多肽的溶血性. 结果表明, 大部分类似肽具有较低的溶血毒性和较高的广谱抗菌活性. CD光谱分析结果显示, 大部分类似肽二级结构以α螺旋和无规则卷曲为主, 在体积分数为50%的2,2,2-三氟乙醇(TFE)溶液中, α螺旋结构比例增加. 与母肽SAMP1相比, 经序列重排后得到的SAMP1-A1, SAMP1-A2和SAMP1-A3的抗菌活性变化不大, 但序列中正电荷氨基酸残基均匀分布的类似肽SAMP1-A2的溶血毒性增加. 用精氨酸(Arg)取代SAMP1序列中的赖氨酸(Lys)得到的类似肽SAMP1-A4的抗菌活性增强, 同时溶血毒性降低. 用疏水性较强的异亮氨酸(Ile)和缬氨酸(Val)取代SAMP1中的疏水性氨基酸残基, 得到的类似肽SAMP1-A5和SAMP1-A7的抗菌活性急剧降低; 用疏水性较弱的色氨酸(Trp)取代SAMP1中的疏水性氨基酸残基, 得到的类似肽SAMP1-A8的抗菌活性增强, 同时溶血毒性提高.  相似文献   

14.
Chitosan, a natural biopolymer, is an ideal candidate to prepare biomaterials capable of preventing microbial infections due to its antibacterial properties. Electrospinning is a versatile method ideally suited to process biopolymers with minimal impact on their physicochemical properties. However, fabrication parameters and post-processing routine can affect biological activity and, therefore, must be well adjusted. In this study, nanofibrous membranes were prepared using trifluoroacetic acid and dichloromethane and evaluated for physiochemical and antimicrobial properties. The use of such biomaterials as potential antibacterial agents was extensively studied in vitro using Staphylococcus aureus and Escherichia coli as test organisms. The antibacterial assay showed inhibition of bacterial growth and eradication of the planktonic cells of both E. coli and S. aureus in the liquid medium for up to 6 hrs. The quantitative assay showed a significant reduction in bacteria cell viability by nanofibers depending on the method of fabrication. The antibacterial properties of these biomaterials can be attributed to the structural modifications provided by co-solvent formulation and application of post-treatment procedure. Consequently, the proposed antimicrobial surface modification method is a promising technique to prepare biomaterials designed to induce antimicrobial resistance via antiadhesive capability and the biocide-releasing mechanism.  相似文献   

15.
设计合成了具有2个活性序列的线性和环状多肽及具有单个活性序列的短链多肽, 研究了它们的杀菌活性、 细胞毒性及溶血性. 结果表明, 线性肽和环状肽的杀菌活性高于短链肽. 利用计算模拟的方法计算了多肽与细菌细胞膜中一种重要的成分磷脂酰甘油(DMPG)的结合能. 结果表明, 多肽-DMPG的结合能与多肽的杀菌活性具有较高的相关性, 线性和环状多肽与DMPG的结合能大于短链肽. 线性和环状多肽均含有2个活性序列, 可提供多个荷正电氨基酸与荷负电的磷脂结合, 结合能较大, 杀菌活性较强. 采用模拟生物膜对其中几条多肽的作用机理进行了初步研究. 结果表明, 该类多肽有可能使正常哺乳动物细胞的细胞膜产生孔洞; 而对于细菌细胞膜, 多肽并未在膜上产生明显孔洞, 而是引起了细菌细胞膜的聚集.  相似文献   

16.
We have prepared and characterized a new polyurethane-based antimicrobial material, N,N-dodecyl,methyl-polyurethane (Quat-12-PU). It exhibits strong antiviral and antibacterial activities when coated (as an organic solution or an aqueous nanosuspension) onto surfaces and antibacterial activity when electrospun into nanofibers. Quat-12-PU surfaces are able to kill airborne Gram-positive Staphylococcus aureus and Gram-negative Escherichia coli bacteria, as well as inactivate the enveloped influenza virus (but not the non-enveloped poliovirus).  相似文献   

17.
Anti‐biofilm formation on the surface is a severe issue in medical implants, hull surface, and food industry. Antimicrobial peptide, magainin II, was covalently bound to stainless steel surfaces through multi‐step modification. The untreated and modified samples were analyzed by SEM‐EDS, XPS, and contact angle, respectively, which indicated the peptide was immobilized on the surfaces. The antimicrobial tests of modified samples were conducted using Staphylococcus aureus and Escherichia coli, and the results revealed that peptide modified surface decreased the biofilm and bacteria quantity of stainless steel surface.  相似文献   

18.
The search for new antibacterial agents has become urgent due to the exponential growth of bacterial resistance to antibiotics. Nitrogen-containing heterocycles such as 1,8-naphthyridine derivatives have been shown to have excellent antimicrobial properties. Therefore, the purpose of this study was to evaluate the antibacterial and antibiotic-modulating activities of 1,8-naphthyridine derivatives against multi-resistant bacterial strains. The broth microdilution method was used to determine the minimum inhibitory concentration (MIC) of the following compounds: 7-acetamido-1,8-naphthyridin-4(1H)-one and 3-trifluoromethyl-N-(5-chloro-1,8-naphthyridin-2-yl)-benzenesulfonamide. The antibiotic-modulating activity was analyzed using subinhibitory concentrations (MIC/8) of these compounds in combination with norfloxacin, ofloxacin, and lomefloxacin. Multi-resistant strains of Escherichia coli, Pseudomonas aeruginosa, and Staphylococcus aureus were used in both tests. Although the compounds had no direct antibacterial activity (MIC ≥ 1.024 µg/mL), they could decrease the MIC of these fluoroquinolones, indicating synergism was obtained from the association of the compounds. These results suggest the existence of a structure–activity relationship in this group of compounds with regard to the modulation of antibiotic activity. Therefore, we conclude that 1,8-naphthyridine derivatives potentiate the activity of fluoroquinolone antibiotics against multi-resistant bacterial strains, and thereby interesting candidates for the development of drugs against bacterial infections caused by multidrug resistant strains.  相似文献   

19.
Organic-inorganic hybrid coatings containing quaternary ammonium salts (QAS) bonded to the organic-inorganic network were prepared from tetraethoxysilane and triethoxysilane terminated poly(ethylene glycol)-block-poly(ethylene) using a sol-gel process. They were applied as a thin layer (0.6-1 μm) to PE films and the antibacterial activity of the coated films was tested against both Gram-negative (Escherichia coli ATCC 25922) and Gram-positive (Staphylococcus aureus ATCC 6538) bacteria. Measurements at different contact times showed a rapid decrease of the viable count for both the tested strains. In particular, after 48 h of contact, a decrease of 96.4% and 99.1% of E. coli and S. aureus, respectively, was observed. The permanence of the antibacterial activity of the coated films was demonstrated through repeated washings and prolonged immersion in physiological saline solutions at 37 °C. Indeed, due to the removal of QAS moieties by the nucleophilic attack of water, the antibacterial activity after 24 h was strongly reduced when measured on samples submitted to several washings. However, a quite good antibacterial activity was observed even on the same samples after 96 h, probably due to a spontaneous partial restoring of the QAS on the surface. Very good transparency, quite good adhesion and high wettability are further features of these hybrid coatings.  相似文献   

20.
A xylanase gene, aws-2x, was directly cloned from the genomic DNA of the alkaline wastewater sludge using degenerated PCR and modified TAIL-PCR. The deduced amino acid sequence of AWS-2x shared the highest identity (60%) with the xylanase from Chryseobacterium gleum belonging to the glycosyl hydrolase GH family 10. Recombinant AWS-2x was expressed in Escherichia coli BL21 (DE3) and purified to electrophoretic homogeneity. The enzyme showed maximal activity at pH 7.5 and 55 °C, maintained more than 50% of maximal activity when assayed at pH 9.0, and was stable over a wide pH range from 4.0 to 11.0. The specific activity of AWS-2x towards hardwood xylan (beechwood and birchwood xylan) was significantly higher than that to cereal xylan (oat spelt xylan and wheat arabinoxylan). These properties make AWS-2x a potential candidate for application in the pulp and paper industry.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号