首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A quinoxaline scaffold exhibits various bioactivities in pharmacotherapeutic interests. In this research, twelve quinoxaline derivatives were synthesized and evaluated as new acetylcholinesterase inhibitors. We found all compounds showed potent inhibitory activity against acetylcholinesterase (AChE) with IC50 values of 0.077 to 50.080 µM, along with promising predicted drug-likeness and blood–brain barrier (BBB) permeation. In addition, potent butyrylcholinesterase (BChE) inhibitory activity with IC50 values of 14.91 to 60.95 µM was observed in some compounds. Enzyme kinetic study revealed the most potent compound (6c) as a mixed-type AChE inhibitor. No cytotoxicity from the quinoxaline derivatives was noticed in the human neuroblastoma cell line (SHSY5Y). In silico study suggested the compounds preferred the peripheral anionic site (PAS) to the catalytic anionic site (CAS), which was different from AChE inhibitors (tacrine and galanthamine). We had proposed the molecular design guided for quinoxaline derivatives targeting the PAS site. Therefore, the quinoxaline derivatives could offer the lead for the newly developed candidate as potential acetylcholinesterase inhibitors.  相似文献   

2.
Alzheimer’s disease (AD) is a neurodegenerative disease that causes memory and cognitive decline as well as behavioral problems. It is a progressive and well recognized complex disease; therefore, it is very urgent to develop novel and effective anti-AD drugs. In this study, a series of novel isochroman-4-one derivatives from natural (±)-7,8-dihydroxy-3-methyl-isochroman-4-one [(±)-XJP] were designed and synthesized, and their anti-AD potential was evaluated. Among them, compound 10a [(Z)-3-acetyl-1-benzyl-4-((6,7-dimethoxy-4-oxoisochroman-3-ylidene)methyl)pyridin-1-ium bromide] possessed potent anti-acetylcholinesterase (AChE) activity as well as modest antioxidant activity. Further molecular modeling and kinetic investigations revealed that compound 10a was a dual-binding inhibitor that binds to both catalytic anionic site (CAS) and peripheral anionic site (PAS) of the enzyme AChE. In addition, compound 10a exhibited low cytotoxicity and moderate anti-Aβ aggregation efficacy. Moreover, the in silico screening suggested that these compounds could pass across the blood–brain barrier with high penetration. These findings show that compound 10a was a promising lead from a natural product with potent AChE inhibitory activity and deserves to be further developed for the prevention and treatment of AD.  相似文献   

3.
N -(1-(4-Methoxyphenyl)-3-oxo-3-((4-( N -(substituted)sulfamoyl)phenyl)amino)prop-1-en-1-yl)benzamides 3a – g were designed since sulfonamide and benzamide pharmacophores draw great attention in novel drug design due to their wide range of bioactivities including acetylcholinesterase (AChE) and human carbonic anhydrase I and II (hCA I and hCA II) inhibitory potencies. Structure elucidation of the compounds was carried out by 1H NMR, 13C NMR, and HRMS spectra. In vitro enzyme assays showed that the compounds had significant inhibitory potential against hCA I, hCA II, and AChE enzymes at nanomolar levels. Ki values were in the range of 4.07 ± 0.38 – 29.70 ± 3.18 nM for hCA I and 10.68 ± 0.98 – 37.16 ± 7.55 nM for hCA II while Ki values for AChE were in the range of 8.91 ± 1.65 – 34.02 ± 5.90 nM. The most potent inhibitors 3g (Ki = 4.07 ± 0.38 nM, hCA I), 3c (Ki = 10.68 ± 0.98 nM, hCA II ) , and 3f (Ki = 8.91 ± 1.65 nM, AChE) can be considered as lead compounds of this study with their promising bioactivity results. Secondary sulfonamides showed promising enzyme inhibitory effects on AChE while primary sulfonamide derivative was generally effective on hCA I and hCA II isoenzymes.  相似文献   

4.
A series of new analogs of nitrogen mustards (4a–4h) containing the 1,3,5-triazine ring substituted with dipeptide residue were synthesized and evaluated for the inhibition of both acetylcholinesterase (AChE) and β-secretase (BACE1) enzymes. The AChE inhibitory activity studies were carried out using Ellman’s colorimetric method, and the BACE1 inhibitory activity studies were carried out using fluorescence resonance energy transfer (FRET). All compounds displayed considerable AChE and BACE1 inhibition. The most active against both AChE and BACE1 enzymes were compounds A and 4a, with an inhibitory concentration of AChE IC50 = 0.051 µM; 0.055 µM and BACE1 IC50 = 9.00 µM; 11.09 µM, respectively.  相似文献   

5.
Alzheimer’s disease (AD) is a slowly progressive neurodegenerative disease that causes dementia in people aged 65 and over. In the present study, a series of thiadiazole hybrid compounds with benzothiazine derivatives as acetylcholinesterase inhibitors were developed and evaluated for their biological activity. The AChE and BChE inhibition potentials of all compounds were evaluated by using the in vitro Ellman method. The biological evaluation showed that compounds 3i and 3j displayed significant inhibitory activity against AChE. Compounds 3i and 3j showed IC50 values of 0.027 µM and 0.025 µM against AChE, respectively. The reference drug donepezil (IC50 = 0.021 µM) also showed significant inhibition against AChE. Further docking simulation also revealed that these compounds (3i and 3j) interacted with the active site of the enzyme similarly to donepezil. The antioxidant study revealed that compounds 3i and 3j exhibited greater antioxidant effects. An in vitro blood–brain barrier permeability study showed that compounds 3i and 3j are promising compounds against AD. The cytotoxicity study of compounds 3i and 3j showed non-cytotoxic with an IC50 value of 98.29 ± 3.98 µM and 159.68 ± 5.53 µM against NIH/3T3 cells, respectively.  相似文献   

6.
Using two ways of functionalizing amiridine—acylation with chloroacetic acid chloride and reaction with thiophosgene—we have synthesized new homobivalent bis-amiridines joined by two different spacers—bis-N-acyl-alkylene (3) and bis-N-thiourea-alkylene (5) —as potential multifunctional agents for the treatment of Alzheimer’s disease (AD). All compounds exhibited high inhibitory activity against acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) with selectivity for BChE. These new agents displayed negligible carboxylesterase inhibition, suggesting a probable lack of untoward drug–drug interactions arising from hydrolytic biotransformation. Compounds 3 with bis-N-acyl-alkylene spacers were more potent inhibitors of both cholinesterases compared to compounds 5 and the parent amiridine. The lead compounds 3a–c exhibited an IC50(AChE) = 2.9–1.4 µM, IC50(BChE) = 0.13–0.067 µM, and 14–18% propidium displacement at 20 μM. Kinetic studies of compounds 3a and 5d indicated mixed-type reversible inhibition. Molecular docking revealed favorable poses in both catalytic and peripheral AChE sites. Propidium displacement from the peripheral site by the hybrids suggests their potential to hinder AChE-assisted Aβ42 aggregation. Conjugates 3 had no effect on Aβ42 self-aggregation, whereas compounds 5c–e (m = 4, 5, 6) showed mild (13–17%) inhibition. The greatest difference between conjugates 3 and 5 was their antioxidant activity. Bis-amiridines 3 with N-acylalkylene spacers were nearly inactive in ABTS and FRAP tests, whereas compounds 5 with thiourea in the spacers demonstrated high antioxidant activity, especially in the ABTS test (TEAC = 1.2–2.1), in agreement with their significantly lower HOMO-LUMO gap values. Calculated ADMET parameters for all conjugates predicted favorable blood–brain barrier permeability and intestinal absorption, as well as a low propensity for cardiac toxicity. Thus, it was possible to obtain amiridine derivatives whose potencies against AChE and BChE equaled (5) or exceeded (3) that of the parent compound, amiridine. Overall, based on their expanded and balanced pharmacological profiles, conjugates 5c–e appear promising for future optimization and development as multitarget anti-AD agents.  相似文献   

7.
Two rare guanidine-type alkaloids, Buthutin A (1) and Buthutin B (2), along with two other compounds (3, 4), were isolated from Buthus martensii Karsch, and determined using extensive spectroscopic data analysis and high resolution-mass spectrometry. Compound 1 showed the most potent inhibition on AChE and BChE with IC50 values of 7.83 ± 0.06 and 47.44 ± 0.95 μM, respectively. Kinetic characterization of compound 1 confirmed a mixed-type of AChE inhibition mechanism in accordance with the docking results, which shows its interaction with both catalytic active (CAS) and peripheral anionic (PAS) sites. The specific binding of compound 1 to PAS domain of AChE was also confirmed experimentally. Moreover, compounds 1 and 3 exhibited satisfactory biometal binding abilities toward Cu2+, Fe2+, Zn2+ and Al3+ ions. These results provide a new evidence for further development and utilization of B. martensii in health and pharmaceutical products.  相似文献   

8.
Alzheimer’s disease (AD) is one of the most devastating neurodegenerative disorders, characterized by multiple pathological features. Therefore, multi-target drug discovery has been one of the most active fields searching for new effective anti-AD therapies. Herein, a series of hybrid compounds are reported which were designed and developed by combining an aryl-sulfonamide function with a benzyl-piperidine moiety, the pharmacophore of donepezil (a current anti-AD acetylcholinesterase AChE inhibitor drug) or its benzyl-piperazine analogue. The in vitro results indicate that some of these hybrids achieve optimized activity towards two main AD targets, by displaying excellent AChE inhibitory potencies, as well as the capability to prevent amyloid-β (Aβ) aggregation. Some of these hybrids also prevented Aβ-induced cell toxicity. Significantly, drug-like properties were predicted, including for blood-brain permeability. Compound 9 emerged as a promising multi-target lead compound (AChE inhibition (IC50 1.6 μM); Aβ aggregation inhibition 60.7%). Overall, this family of hybrids is worthy of further exploration, due to the wide biological activity of sulfonamides.  相似文献   

9.
The discovery of enzyme targeting inhibitors is a popular area of drug research. Biological activities of the compounds bearing phenol and heteroaryl groups make them popular groups in drug design targeting important enzymes such as acetylcholinesterase (AChE, E.C.3.1.1.7) and carbonic anhydrases (CAs, EC 4.2.1.1). 1-(4-hydroxyphenyl)- 2-((aryl)thio)ethanones as possible AChE and CAs inhibitors were synthesized, and their chemical structures were confirmed by IR, 1H NMR, 13C NMR, and HRMS. The compounds 2 and 4 were found potent AChE inhibitors with the Ki values of 22.13 ±1.96 nM and 23.71 ±2.95 nM, respectively, while the compounds 2 (Ki = 8.61 ±0.90 nM, on hCA I) and 1 (Ki = 8.76 ±0.84 nM, on hCA II) had considerable CAs inhibitory potency. The lead compounds may help the scientists for the rational designing of an innovative class of drug candidates targeting enzyme-based diseases.  相似文献   

10.
Based on the broad spectrum of biological activity of hydrazide–hydrazones, trifluoromethyl compounds, and clinical usage of cholinesterase inhibitors, we investigated hydrazones obtained from 4-(trifluoromethyl)benzohydrazide and various benzaldehydes or aliphatic ketones as potential inhibitors of acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE). They were evaluated using Ellman’s spectrophotometric method. The hydrazide–hydrazones produced a dual inhibition of both cholinesterase enzymes with IC50 values of 46.8–137.7 µM and 19.1–881.1 µM for AChE and BuChE, respectively. The majority of the compounds were stronger inhibitors of AChE; four of them (2-bromobenzaldehyde, 3-(trifluoromethyl)benzaldehyde, cyclohexanone, and camphor-based 2o, 2p, 3c, and 3d, respectively) produced a balanced inhibition of the enzymes and only 2-chloro/trifluoromethyl benzylidene derivatives 2d and 2q were found to be more potent inhibitors of BuChE. 4-(Trifluoromethyl)-N’-[4-(trifluoromethyl)benzylidene]benzohydrazide 2l produced the strongest inhibition of AChE via mixed-type inhibition determined experimentally. Structure–activity relationships were identified. The compounds fit physicochemical space for targeting central nervous systems with no apparent cytotoxicity for eukaryotic cell line together. The study provides new insights into this CF3-hydrazide–hydrazone scaffold.  相似文献   

11.
Acetylcholinesterase (AChE) is one of the classical targets in the treatment of Alzheimer’s disease (AD). Inhibition of AChE slows down the hydrolysis of acetycholine and increases choline levels, improving the cognitive function. The achieved success of plant-based natural drugs acting as AChE inhibitors, such as galantamine (GAL) from Galanthus genus and huperzine A from Huperzia serrate (approved drug in China), in the treatment of AD, and the fact that natural compounds (NCs) are considered as safer and less toxic compared to synthetic drugs, led us to screen the available NCs (almost 150,000) in the ZINC12 database for AChE inhibitory activity. The compounds were screened virtually by molecular docking, filtered for suitable ADME properties, and 32 ligands from 23 structural groups were selected. The stability of the complexes was estimated via 1 μs molecular dynamics simulation. Ten compounds formed stable complexes with the enzyme and had a vendor and a reasonable price per mg. They were tested for AChE inhibitory and antioxidant activity. Five compounds showed weak AChE inhibition and three of them exhibited high antioxidant activity.  相似文献   

12.
Cholinesterase (ChE) inhibition is an important treatment strategy for Alzheimer’s disease (AD) as acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) are involved in the pathology of AD. In the current work, ChE inhibitory potential of twenty-four natural products from different chemical classes (i.e., diosgenin, hecogenin, rockogenin, smilagenin, tigogenin, astrasieversianins II and X, astragalosides I, IV, and VI, cyclocanthosides E and G, macrophyllosaponins A-D, kokusaginin, lamiide, forsythoside B, verbascoside, alyssonoside, ipolamide, methyl rosmarinate, and luteolin-7-O-glucuronide) was examined using ELISA microtiter assay. Among them, only smilagenin and kokusaginine displayed inhibitory action against AChE (IC50 = 43.29 ± 1.38 and 70.24 ± 2.87 µg/mL, respectively). BChE was inhibited by only methyl rosmarinate and kokusaginine (IC50 = 41.46 ± 2.83 and 61.40 ± 3.67 µg/mL, respectively). IC50 values for galantamine as the reference drug were 1.33 ± 0.11 µg/mL for AChE and 52.31 ± 3.04 µg/mL for BChE. Molecular docking experiments showed that the orientation of smilagenin and kokusaginine was mainly driven by the interactions with the peripheral anionic site (PAS) comprising residues of hAChE, while kokusaginine and methyl rosmarinate were able to access deeper into the active gorge in hBChE. Our data indicate that similagenin, kokusaginine, and methyl rosmarinate could be hit compounds for designing novel anti-Alzheimer agents.  相似文献   

13.
In this study, the synthesis of new monostyryl (BDPY-2) and distyryl BODIPY dyes (BDPY-4, BDPY-5) containing pyridine groups has been reported for the first time. The acetylcholinesterase from Electrophorus electricus (AChE), butyrylcholinesterase from equine serum (BuChE), α-glucosidase from Saccharomyces cerevisiae and DNA hydrolytic cleavage actions of BDPY-2, BDPY-4, BDPY-5 were investigated using various techniques. The results indicated that the compounds had varying inhibition properties against AChE, BuChE, and α-glucosidase. BDPY-4 was the most potent compound on AChE with IC50 of 54.78 ± 4.51 µM, and Lineweaver–Burk plots indicated that the compound is bound to a site other than the active site as a noncompetitive inhibitor. The compound-protein binding experiment showed that BDPY-4 changed the microenvironment around AChE. On the other hand, the compounds showed lower α-glucosidase inhibition than the positive control. The DNA hydrolytic cleavage effects were not observed on supercoiled plasmid DNA in the presence of the compounds as compared to negative controls. These findings suggested that BDPY-4 might be a promising compound to treat Alzheimer’s diseases.  相似文献   

14.
In the study, two novel compounds along with two new compounds were isolated from Grewia optiva. The novel compounds have never been reported in any plant source, whereas the new compounds are reported for the first time from the studied plant. The four compounds were characterized as: 5,5,7,7,11,13-hexamethyl-2-(5-methylhexyl)icosahydro-1H-cyclopenta[a]chrysen-9-ol (IX), docosanoic acid (X), methanetriol mano formate (XI) and 2,2’-(1,4-phenylene)bis(3-methylbutanoic acid (XII). The anticholinesterase, antidiabetic, and antioxidant potentials of these compounds were determined using standard protocols. All the isolated compounds exhibited a moderate-to-good degree of activity against acetylcholinesterases (AChE) and butyrylcholinesterase (BChE). However, compound XII was particularly effective with IC50 of 55 μg/mL (against AChE) and 60 μg/mL (against BChE), and this inhibitory activity is supported by in silico docking studies. The same compound was also effective against DPPH (2,2-diphenyl-1-picrylhydrazyl) and ABTS (2,2′-azinobis-3-ethylbenzothiazoline-6-sulfonic acid) radicals with IC50 values of 60 and 62 μg/mL, respectively. The compound also significantly inhibited the activities of α-amylase and α-glucosidase in vitro. The IC50 values for inhibition of the two enzymes were recorded as 90 and 92 μg/mL, respectively. The in vitro potentials of compound XII to treat Alzheimer’s disease (in terms of AchE and BChE inhibition), diabetes (in terms of α-amylase and α-glucosidase inhibition), and oxidative stress (in terms of free radical scavenging) suggest further in vivo investigations of the compound for assessing its efficacy, safety profile, and other parameters to proclaim the compound as a potential drug candidate.  相似文献   

15.
In this work, nine new bromophenol derivatives were designed and synthesized. The alkylation reactions of (2-bromo-4,5-dimethoxyphenyl)methanol (7) with substituted benzenes 8–12 produced new diaryl methanes 13–17. Targeted bromophenol derivatives 18–21 were synthesized via the O-Me demethylation of diaryl methanes with BBr3. Moreover, the synthesized bromophenol compounds were tested with some metabolic enzymes such as acetylcholinesterase (AChE), carbonic anhydrase I (CA I), and II (CA II) isoenzymes. The novel synthesized bromophenol compounds showed Ki values that ranged from 2.53 ± 0.25 to 25.67 ± 4.58 nM against hCA I, from 1.63 ± 0.11 to 15.05 ± 1.07 nM against hCA II, and from 6.54 ± 1.03 to 24.86 ± 5.30 nM against AChE. The studied compounds in this work exhibited effective hCA isoenzyme and AChE enzyme inhibition effects. The results show that they can be used for the treatment of glaucoma, epilepsy, Parkinson’s as well as Alzheimer’s disease (AD) after some imperative pharmacological studies that would reveal their drug potential.  相似文献   

16.
Coumarin derivatives are proven for their therapeutic uses in several human diseases and disorders such as inflammation, neurodegenerative disorders, cancer, fertility, and microbial infections. Coumarin derivatives and coumarin-based scaffolds gained renewed attention for treating diabetes mellitus. The current decade witnessed the inhibiting potential of coumarin derivatives and coumarin-based scaffolds against α-glucosidase and α-amylase for the management of postprandial hyperglycemia. Hyperglycemia is a condition where an excessive amount of glucose circulates in the bloodstream. It occurs when the body lacks enough insulin or is unable to correctly utilize it. With open-source and free in silico tools, we have investigated novel 80 coumarin derivatives for their inhibitory potential against α-glucosidase and α-amylase and identified a coumarin derivative, CD-59, as a potential dual inhibitor. The ligand-based 3D pharmacophore detection and search is utilized to discover diverse coumarin-like compounds and new chemical scaffolds for the dual inhibition of α-glucosidase and α-amylase. In this regard, four novel coumarin-like compounds from the ZINC database have been discovered as the potential dual inhibitors of α-glucosidase and α-amylase (ZINC02789441 and ZINC40949448 with scaffold thiophenyl chromene carboxamide, ZINC13496808 with triazino indol thio phenylacetamide, and ZINC09781623 with chromenyl thiazole). To summarize, we propose that a coumarin derivative, CD-59, and ZINC02789441 from the ZINC database will serve as potential lead molecules with dual inhibition activity against α-glucosidase and α-amylase, thereby discovering new drugs for the effective management of postprandial hyperglycemia. From the reported scaffold, the synthesis of several novel compounds can also be performed, which can be used for drug discovery.  相似文献   

17.
Direct inhibitors of glycogen synthase kinase 3β (GSK3β) have been investigated and reported for the past 20 years. In the search for novel scaffold inhibitors, 3000 compounds were selected through structure-based virtual screening (SBVS), and then high-throughput enzyme screening was performed. Among the active hit compounds, pyrazolo [1,5-a]pyrimidin-7-amine derivatives showed strong inhibitory potencies on the GSK3β enzyme and markedly activated Wnt signaling. The result of the molecular dynamics (MD) simulation, enhanced by the upper-wall restraint, was used as an advanced structural query for the SBVS. In this study, strong inhibitors designed to inhibit the GSK3β enzyme were discovered through SBVS. Our study provides structural insights into the binding mode of the inhibitors for further lead optimization.  相似文献   

18.
In this study, a new series of Mannich bases, 3-(aminomethyl)-6-{3-[4-(trifluoromethyl)phenyl]acryloyl}-2( 3H )-benzoxazolones ( 1a–g ), were synthesized by the Mannich reaction. Inhibitory effects of the newly synthesized compounds towards carbonic anhydrases (CAs) and acetylcholinesterase (AChE) enzymes were evaluated to find out new potential drug candidate compounds. According to the inhibitory activity results, Ki values of the compounds 1 and 1a–g were in the range of 12.3 ± 1.2 to 154.0 ± 9.3 nM against hCA I, and they were in the range of 8.6 ± 1.9 to 41.0 ± 5.5 nM against hCA II. Ki values of acetazolamide (AZA) that was used as a reference compound were 84.4 ± 8.4 nM towards hCA I and 59.2 ± 4.8 nM towards hCA II. Ki values of the compounds 1 and 1a–g were in the range of 35.2 ± 2.0 to 158.9 ± 33.5 nM towards AChE. Ki value of Tacrine (TAC), the reference compound, was 68.6 ± 3.8 nM towards AChE. Furthermore, docking studies were done with the most potent compounds 1d , 1g , and 1f (in terms of hCA I, hCA II, and AChE inhibition effects, respectively) to determine the binding profiles of the series with these enzymes. Additionally, the prediction of ADME profiles of the compounds pointed out that the newly synthesized compounds had desirable physicochemical properties as lead compounds for further studies.  相似文献   

19.
A new series of conjugates of aminoadamantane and γ-carboline, which are basic scaffolds of the known neuroactive agents, memantine and dimebon (Latrepirdine) was synthesized and characterized. Conjugates act simultaneously on several biological structures and processes involved in the pathogenesis of Alzheimer’s disease and some other neurodegenerative disorders. In particular, these compounds inhibit enzymes of the cholinesterase family, exhibiting higher inhibitory activity against butyrylcholinesterase (BChE), but having almost no effect on the activity of carboxylesterase (anti-target). The compounds serve as NMDA-subtype glutamate receptor ligands, show mitoprotective properties by preventing opening of the mitochondrial permeability transition (MPT) pore, and act as microtubule stabilizers, stimulating the polymerization of tubulin and microtubule-associated proteins. Structure–activity relationships were studied, with particular attention to the effect of the spacer on biological activity. The synthesized conjugates showed new properties compared to their prototypes (memantine and dimebon), including the ability to bind to the ifenprodil-binding site of the NMDA receptor and to occupy the peripheral anionic site of acetylcholinesterase (AChE), which indicates that these compounds can act as blockers of AChE-induced β-amyloid aggregation. These new attributes of the conjugates represent improvements to the pharmacological profiles of the separate components by conferring the potential to act as neuroprotectants and cognition enhancers with a multifunctional mode of action.  相似文献   

20.
Twenty-four analogues of benzimidazole-based thiazoles (1–24) were synthesized and assessed for their in vitro acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE) inhibitory potential. All analogues were found to exhibit good inhibitory potential against cholinesterase enzymes, having IC50 values in the ranges of 0.10 ± 0.05 to 11.10 ± 0.30 µM (for AChE) and 0.20 ± 0.050 µM to 14.20 ± 0.10 µM (for BuChE) as compared to the standard drug Donepezil (IC50 = 2.16 ± 0.12 and 4.5 ± 0.11 µM, respectively). Among the series, analogues 16 and 21 were found to be the most potent inhibitors of AChE and BuChE enzymes. The number (s), types, electron-donating or -withdrawing effects and position of the substituent(s) on the both phenyl rings B & C were the primary determinants of the structure-activity relationship (SAR). In order to understand how the most active derivatives interact with the amino acids in the active site of the enzyme, molecular docking studies were conducted. The results obtained supported the experimental data. Additionally, the structures of all newly synthesized compounds were elucidated by using several spectroscopic methods like 13C-NMR, 1H-NMR and HR EIMS.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号