首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The reaction of diethyl α-oxoethylphosphonate and diethyl oxobenzylphosphonate with diethyl phosphite, dimethyl phosphite, and diphenylphosphine oxide affords, depending on the substrates and conditions (nature and quantity of the amine catalyst, temperature, and solvent), the Pudovik adduct and/or the corresponding >P(O)–CH–O–P(O)< product formed by rearrangement. The nature of the substituent on the central carbon atom (a methyl or phenyl group) influences the inclination for the rearrangement. The asymmetric products (either adducts or rearranged species) with different P(O)Y functions (Y = RO or Ph) exhibit interesting NMR features.  相似文献   

2.
Ethylenediaminotetramethylenephosphonic acid (EDTMP, H8L) was prepared and its complexes with some lanthanide ions (La, Eu, Gd and Sm) were isolated under various conditions. IR spectra and thermal stabilities of EDTMP and its complexes were studied. The experimental conditions of the preparation influence to the composition of the complexes were shown. In alkaline solution (pH=8) deprotonated (P(O)(O)2), and in acidic solution (pH=3–4) deprotonated and partly protonated (P(O)(O)(OH)) and non-protonated (P(O)(OH)2) phosphonic groups are present in the complexes. All the complexes contain coordinated water molecules. The complexes containing a protonated phosphonic group contain coordinated and hydrogen-bonded water molecules.This revised version was published online in November 2005 with corrections to the Cover Date.  相似文献   

3.
Diet-related obesity is associated with increased intestinal hyperpermeability. High dietary fat intake causes an increase in colonic bile acids (BAs), particularly deoxycholic acid (DCA). We hypothesize that DCA modulates the gene expression of multiple cell junction pathways and increases intestinal permeability. With a human Caco-2 cell intestinal model, we used cell proliferation, PCR array, biochemical, and immunofluorescent assays to examine the impact of DCA on the integrity of the intestinal barrier and gene expression. The Caco-2 cells were grown in monolayers and challenged with DCA at physiological, sub-mM, concentrations. DCA increased transcellular and paracellular permeability (>20%). Similarly, DCA increased intracellular reactive oxidative species production (>100%) and accompanied a decrease (>40%) in extracellular signal-regulated kinase 1/2 (ERK1/2) signaling pathways. Moreover, the mRNA levels of 23 genes related to the epithelial barrier (tight junction, focal adhesion, gap junction, and adherens junction pathways) were decreased (>40%) in (0.25 mM) DCA-treated Caco-2 cells compared to untreated cells. Finally, we demonstrated that DCA decreased (>58%) the protein content of occludin present at the cellular tight junctions and the nucleus of epithelial cells. Collectively, DCA decreases the gene expression of multiple pathways related to cell junctions and increases permeability in a human intestinal barrier model.  相似文献   

4.
This work reports the elusive structural evidence for the [4]pseudorotaxane of β‐cyclodextrin (β‐CD) with coffee chlorogenic acid (CGA), a conjugate of caffeic acid (CFA) and quinic acid (QNA). A single‐crystal X‐ray structure analysis of the inclusion complex β‐cyclodextrin–chlorogenic acid–water (2/2/17), 2C42H70O35·2C16H18O9·17H2O, reveals that CGA threads through β‐CD and assembles via O—H…O hydrogen bonds and parallel‐displaced π–π interactions in the twofold symmetry‐related dimer yielding a [4]pseudorotaxane, which is crystallographically observed for the first time in CD inclusion complexes. The encapsulation of the aromatic ring and C=C—C(=O)O chain in the β‐CD dimeric cavity indicates that the CFA moiety plays a determinant role in complexation. This is in agreement with the DFT‐derived relative thermodynamic stabilities of the trimodal β‐CD–CGA inclusion complexes, that is, β‐CD complexed with different CGA components: C=C—C(=O)O chain > cyclohexane ring > aromatic ring. The complexation stability is further enhanced in the dimeric β‐CD–CGA complex, with the CFA moiety totally enclosed in the β‐CD dimeric cavity.  相似文献   

5.
A sewage sludge-based activated carbon (SBAC) intercalated MgAlFe ternary layered double hydroxide (SBAC-MgAlFe-LDH) composite was synthesized via the coprecipitation method. The adsorptive performance of the composite for phenol uptake from the aqueous phase was evaluated via the response surface methodology (RSM) modeling technique. The SBAC-MgAlFe-LDH phenol uptake capacity data were well-fitted to reduced RSM cubic model (R2 = 0.995, R2-adjusted = 0.993, R2-predicted = 0.959 and p-values < 0.05). The optimum phenol adsorption onto the SBAC-MgAlFe-LDH was achieved at 35 °C, 125 mg/L phenol, and pH 6. Under the optimal phenol uptake conditions, pseudo-first-order and Avrami fractional-order models provided a better representation of the phenol uptake kinetic data, while the equilibrium data models’ fitting follows the order; Liu > Langmuir > Redlich–Peterson > Freundlich > Temkin. The phenol uptake mechanism was endothermic in nature and predominantly via a physisorption process (ΔG° = −5.33 to −5.77 kJ/mol) with the involvement of π–π interactions between the phenol molecules and the functionalities on the SBAC-LDH surface. The maximum uptake capacity (216.76 mg/g) of SBAC-MgAlFe-LDH was much higher than many other SBAC-based adsorbents. The improved uptake capacity of SBAC-LDH was attributed to the effective synergetic influence of SBAC-MgAlFe-LDH, which yielded abundant functionalized surface groups that favored higher aqueous phase uptake of phenol molecules. This study showcases the potential of SBAC-MgAlFe-LDH as an effective adsorbent material for remediation of phenolic wastewater  相似文献   

6.
The Kleier model and Carrier-mediated theory are effective for molecularly designing pesticides with phloem mobility. However, the single Kleier model or Carrier-mediated theory cannot achieve a reliable explanation of the phloem mobility of all exogenous substances. A detailed investigation of the two models and the scope of their applications can provide a more accurate and highly efficient basis for the guidance of the design and development of phloem-mobile pesticides. In the present paper, a strategy using active ingredient-amino acid conjugates as mode compounds is developed based on Carrier-mediated theory. An N-alkylated amino acid is used to improve the pesticide’s physicochemical properties following the Kleier model, thus allowing the conjugates to fall on the predicted and more accessible transportation region of phloem. Moreover, the influence of this movement on phloem is inspected by the Kleier model and Carrier-mediated theory. To verify this strategy, a series of N-alkylated phenazine-1-carboxylic acid-glycine compounds (PCA-Gly) were designed and synthesized. The results related to the castor bean seeds (R. communis L.) indicated that all the target compounds (4a–4f) had phloem mobility. The capacity for phloem mobility shows that N-alkylated glycine containing small substituents can significantly improve PCA phloem mobility, such as 4c(i-C3H7-N) > 4a(CH3-N) ≈ 4b(C2H5-N) > 4d (t-C4H9-N) > PCA-Gly > 4e(C6H5-N) > 4f(CH2COOH-N), with an oil–water partition coefficient between 1.2~2.5. In particular, compounds 4a(CH3-N), 4b(C2H5-N), and 4c(i-C3H7-N) present better phloem mobility, with the average concentrations in phloem sap of 14.62 μΜ, 13.98 μΜ, and 17.63 μΜ in the first 5 h, which are 8 to 10 times higher than PCA-Gly (1.71 μΜ). The results reveal that the Kleier model and Carrier-mediated theory play a guiding role in the design of phloem-mobile pesticides. However, the single Kleier model or Carrier-mediated theory are not entirely accurate. Still, there is a synergism between Carrier-mediated theory and the Kleier model for promoting the phloem transport of exogenous compounds. Therefore, we suggest the introduction of endogenous plant compounds as a promoiety to improve the phloem mobility of pesticides through Carrier-mediated theory. It is necessary to consider the improvement of physicochemical properties according to the Kleier model, which can contribute to a scientific theory for developing phloem-mobile pesticides.  相似文献   

7.
This review focuses on the natural sources and pharmacological activity of tormentic acid (TA; 2α,3β,19α-trihydroxyurs-2-en-28-oic acid). The current knowledge of its occurrence in various plant species and families is summarized. Biological activity (e.g., anti-inflammatory, antidiabetic, antihyperlipidemic, hepatoprotective, cardioprotective, neuroprotective, anti-cancer, anti-osteoarthritic, antinociceptive, antioxidative, anti-melanogenic, cytotoxic, antimicrobial, and antiparasitic) confirmed in in vitro and in vivo studies is compiled and described. Biochemical mechanisms affected by TA are indicated. Moreover, issues related to the biotechnological methods of production, effective eluents, and TA derivatives are presented.  相似文献   

8.
Salicylic acid is a key compound in nonsteroidal anti-inflammatory drugs that has been recently used for preventing the risk of hospitalization and death among COVID-19 patients and in preventing colorectal cancer (CRC) by suppressing two key proteins. Understanding drug–drug interaction pathways prevent the occurrence of adverse drug reactions in clinical trials. Drug–drug interactions can result in the variation of the pharmacodynamics and pharmacokinetic of the drug. Inhibition of the Cytochrome P450 enzyme activity leads to the withdrawal of the drug from the market. The aim of this paper was to develop and validate an HPLC-UV method for the quantification of 4′-hydroxydiclofenac as a CYP2C9 metabolite using salicylic acid as an inhibitor in rat liver microsomes. A CYP2C9 assay was developed and validated on the reversed phase C18 column (SUPELCO 25 cm × 4.6 mm × 5 µm) using a low-pressure gradient elution programming at T = 30 °C, a wavelength of 282 nm, and a flow rate of 1 mL/min. 4′-hydroxydiclofenac demonstrated a good linearity (R2 > 0.99), good reproducibility, low detection, and quantitation limit, and the inter and intra-day precision met the ICH guidelines (<15%). 4′-hydroxydiclofenac was stable for three days and showed an acceptable accuracy and recovery (80–120%) within the ICH guidelines in a rat liver microsome sample. This method will be beneficial for future applications of the in vitro inhibitory effect of salicylic acid on the CYP2C9 enzyme activity in rat microsomes and the in vivo administration of salicylic acid in clinical trials.  相似文献   

9.
Although some studies have explained the immunomodulatory effects of statins, the exact mechanisms and the therapeutic significance of these molecules remain to be elucidated. This study not only evaluated the therapeutic potential and inhibitory mechanism of simvastatin in an ovalbumin (OVA)-specific asthma model in mice but also sought to clarify the future directions indicated by previous studies through a thorough review of the literature. BALB/c mice were sensitized to OVA and then administered three OVA challenges. On each challenge day, 40 mg kg−1 simvastatin was injected before the challenge. The airway responsiveness, inflammatory cell composition, and cytokine levels in bronchoalveolar lavage (BAL) fluid were assessed after the final challenge, and the T cell composition and adhesion molecule expression in lung homogenates were determined. The administration of simvastatin decreased the airway responsiveness, the number of airway inflammatory cells, and the interleukin (IL)-4, IL-5 and IL-13 concentrations in BAL fluid compared with vehicle-treated mice (P<0.05). Histologically, the number of inflammatory cells and mucus-containing goblet cells in lung tissues also decreased in the simvastatin-treated mice. Flow cytometry showed that simvastatin treatment significantly reduced the percentage of pulmonary CD4+ cells and the CD4+/CD8+ T-cell ratio (P<0.05). Simvastatin treatment also decreased the expression of the vascular cell adhesion molecule 1 and intercellular adhesion molecule 1 proteins, as measured in homogenized lung tissues (P<0.05) and human epithelial cells. The reduction in the T cell influx as a result of the decreased expression of cell adhesion molecules is one of the mechanisms by which simvastatin attenuates airway responsiveness and allergic inflammation. Rigorous review of the literature together with our findings suggested that simvastatin should be further developed as a potential therapeutic strategy for allergic asthma.  相似文献   

10.
Dissolved organic matter (DOM) greatly influences the transformation of nutrients and pollutants in the environment. To investigate the effects of pyrolysis temperatures on the composition and evolution of pyroligneous acid (PA)-derived DOM, DOM solutions extracted from a series of PA derived from eucalyptus at five pyrolysis temperature ranges (240–420 °C) were analysed with Fourier transform infrared spectroscopy, gas chromatography–mass spectroscopy, and fluorescence spectroscopy. Results showed that the dissolved organic carbon content sharply increased (p < 0.05) with an increase in pyrolysis temperature. Analysis of the dissolved organic matter composition showed that humic-acid-like substances (71.34–100%) dominated and other fluorescent components (i.e., fulvic-acid-like, soluble microbial by-products, and proteinlike substances) disappeared at high temperatures (>370 °C). The results of two-dimensional correlation spectroscopic analysis suggested that with increasing pyrolysis temperatures, the humic-acid-like substances became more sensitive than other fluorescent components. This study provides valuable information on the characteristic evolution of PA-derived DOM.  相似文献   

11.
Protocatechuic aldehyde (PCAL) and protocatechuic acid (PCAC) are catechol derivatives and have broad therapeutic effects associated with their antiradical activity. Their pharmacological and physicochemical properties have been improved via the cyclodextrin (CD) encapsulation. Because the characteristics of β-CD inclusion complexes with PCAL (1) and PCAC (2) are still equivocal, we get to the bottom of the inclusion complexation by an integrated study of single-crystal X-ray diffraction and DFT full-geometry optimization. X-ray analysis unveiled that PCAL and PCAC are nearly totally shielded in the β-CD wall. Their aromatic rings are vertically aligned in the β-CD cavity such that the functional groups on the opposite side of the ring (3,4-di(OH) and 1-CHO/1-COOH groups) are placed nearby the O6–H and O2–H/O3–H rims, respectively. The preferred inclusion modes in 1 and 2 help to establish crystal contacts of OH⋅⋅⋅O H-bonds with the adjacent β-CD OH groups and water molecules. By contrast, the DFT-optimized structures of both complexes in the gas phase are thermodynamically stable via the four newly formed host–guest OH⋯O H-bonds. The intermolecular OH⋅⋅⋅O H-bonds between PCAL/PCAC 3,4-di(OH) and β-CD O6–H groups, and the shielding of OH groups in the β-CD wall help to stabilize these antioxidants in the β-CD cavity, as observed in our earlier studies. Moreover, PCAL and PCAC in distinct lattice environments are compared for insights into their structural flexibility.  相似文献   

12.
Candida antarctica lipase B-catalyzed hydrolysis of carbocyclic 5–8-membered cis β-amino esters was carried out in green organic media, under solvent-free and ball-milling conditions. In accordance with the high enantioselectivity factor (E > 200) observed in organic media, the preparative-scale resolutions of β-amino esters were performed in tBuOMe at 65 °C. The unreacted β-amino ester enantiomers (1R,2S) and product β-amino acid enantiomers (1S,2R) were obtained with modest to excellent enantiomeric excess (ee) values (ees > 62% and eep > 96%) and in good chemical yields (>25%) in one or two steps. The enantiomers were easily separated by organic solvent/H2O extraction.  相似文献   

13.
Fat globule size and phospholipid (PL) content in human milk (HM) were investigated. HM was classified into three groups depending on fat content (A < B < C). PL content (mg/100 g HM) was significantly higher in the C group (p < 0.05), indicating its positive relationship with HM fat content. When the PL content was normalized (mg/g fat), that of group A was significantly higher (p < 0.05) and fat droplet size in group C was slightly larger, suggesting that HM fat content is affected by fat droplet numbers to a larger extent than by fat droplet size. A correlation between PC and SM content in HM was observed regardless of fat content, while correlation between PE and either PC or SM increased in the order of C > B > A, hence the composition and content of PL species in HM varied according to its fat content.  相似文献   

14.
Despite the common use of salens and hydroxyquinolines as therapeutic and bioactive agents, their metal complexes are still under development. Here, we report the synthesis of novel mixed-ligand metal complexes (MSQ) comprising salen (S), derived from (2,2′-{1,2-ethanediylbis[nitrilo(E) methylylidene]}diphenol, and 8-hydroxyquinoline (Q) with Co(II), Ni(II), Cd(II), Al(III), and La(III). The structures and properties of these MSQ metal complexes were investigated using molar conductivity, melting point, FTIR, 1H NMR, 13C NMR, UV–VIS, mass spectra, and thermal analysis. Quantum calculation, analytical, and experimental measurements seem to suggest the proposed structure of the compounds and its uncommon monobasic tridentate binding mode of salen via phenolic oxygen, azomethine group, and the NH group. The general molecular formula of MSQ metal complexes is [M(S)(Q)(H2O)] for M (II) = Co, Ni, and Cd or [M(S)(Q)(Cl)] and [M(S)(Q)(H2O)]Cl for M(III) = La and Al, respectively. Importantly, all prepared metal complexes were evaluated for their antimicrobial and anticancer activities. The metal complexes exhibited high cytotoxic potency against human breast cancer (MDA-MB231) and liver cancer (Hep-G2) cell lines. Among all MSQ metal complexes, CoSQ and LaSQ produced IC50 values (1.49 and 1.95 µM, respectively) that were comparable to that of cisplatin (1.55 µM) against Hep-G2 cells, whereas CdSQ and LaSQ had best potency against MDA-MB231 with IC50 values of 1.95 and 1.43 µM, respectively. Furthermore, the metal complexes exhibited significant antimicrobial activities against a wide spectrum of both Gram-positive and -negative bacterial and fungal strains. The antibacterial and antifungal efficacies for the MSQ metal complexes, the free S and Q ligands, and the standard drugs gentamycin and ketoconazole decreased in the order AlSQ > LaSQ > CdSQ > gentamycin > NiSQ > CoSQ > Q > S for antibacterial activity, and for antifungal activity followed the trend of LaSQ > AlSQ > CdSQ > ketoconazole > NiSQ > CoSQ > Q > S. Molecular docking studies were performed to investigate the binding of the synthesized compounds with breast cancer oxidoreductase (PDB ID: 3HB5). According to the data obtained, the most probable coordination geometry is octahedral for all the metal complexes. The molecular and electronic structures of the metal complexes were optimized theoretically, and their quantum chemical parameters were calculated. PXRD results for the Cd(II) and La(III) metal complexes indicated that they were crystalline in nature.  相似文献   

15.
The penetration and displacement behavior of N2 molecules in porous interlayer structures containing a water/salt component with porosities of 4.29%, 4.73%, 5.17%, 7.22%, and 11.38% were explored using molecular dynamics simulations. The results demonstrated that the large porosity of the interlayer structures effectively enhanced the permeation and diffusion characteristics of N2. The water and salt in the interlayer structures were displaced during the injection of N2 in the porosity sequence of 4.29% < 4.73% < 5.17% < 7.22% < 11.38%. The high permeance of 7.12 × 10−6 indicated that the interlayer structures with a porosity of 11.38% have better movability. The strong interaction of approximately 15 kcal/mol between N2 and H2O had a positive effect on the diffusion of N2 and the displacement of H2O before it reached a stable equilibrium state. The distribution of N2 in porous interlayer structures and the relationship between the logarithm of permeability and breakthrough pressure were presented. This work highlighted the effects of porosity on the permeability and diffusion of N2/H2O in the interlayer, thus providing theoretical guidance for the development of petroleum resources.  相似文献   

16.
Apples are an important source of biologically active compounds. Consequently, we decided to model hard gelatin capsules with lyophilized apple powder by using different excipients and to evaluate the release kinetics of phenolic compounds. The apple slices of “Ligol” cultivar were immediately frozen in a freezer (at −35°C) with air circulation and were lyophilized with a sublimator at the pressure of 0.01 mbar (condenser temperature, −85°C). Lyophilized apple powder was used as an active substance filled into hard gelatin capsules. We conducted capsule disintegration and dissolution tests to evaluate the quality of apple lyophilizate-containing capsules of different encapsulating content. Individual phenolic compounds can be arranged in the following descending order according to the amount released from the capsules of different compositions: chlorogenic acid > rutin > avicularin > hyperoside > phloridzin > quercitrin > (−)-epicatechin > isoquercitrin. Chlorogenic acid was the compound that was released in the highest amounts from capsules of different encapsulating content: its released amounts ranged from 68.4 to 640.3 μg/mL. According to the obtained data, when hypromellose content ranged from 29% to 41% of the capsule mass, the capsules disintegrated within less than 30 min, and such amounts of hypromellose did not prolong the release of phenolic compounds. Based on the results of the dissolution test, the capsules can be classified as fast-dissolving preparations, as more than 85% of the active substances were released within 30 min.  相似文献   

17.
This work evaluated the application of organic acids (acetic and peracetic acid) and ultrasound as alternative sanitization methods for improving the microbiological and physicochemical qualities of strawberries. A reduction of up to 2.48 log CFU/g aerobic mesophiles and between 0.89 and 1.45 log CFU/g coliforms at 35 °C was found. For molds and yeasts, significant differences occurred with different treatments and storage time (p < 0.05). Ultrasound treatments in combination with peracetic acid and acetic acid allowed a decimal reduction in molds and yeasts (p < 0.05). All evaluated treatments promoted a significant reduction in the Escherichia coli count (p < 0.05). Scanning electron microscopy revealed fragmented E. coli cells due to treatment with acetic acid and ultrasound. Storage time significantly affected pH, total titratable acidity, total soluble solids and the ratio of the total titratable acidity to the total soluble solids (p < 0.05). Anthocyanin content did not change with treatment or time and generally averaged 13.47 mg anthocyanin/100 g of strawberries on fresh matter. Mass loss was not significantly affected by the applied treatments (p > 0.05). The combination of ultrasound and peracetic acid may be an alternative to chlorine-based compounds to ensure microbiological safety without causing significant changes in the physicochemical characteristics of strawberries.  相似文献   

18.
Commercialization of anion exchange membrane fuel cells (AEMFCs) has been limited due to the chemical degradation of various quaternary ammonium (QA) head groups, which affects the transportation of hydroxide (OH) ions in AEMs. Understanding how various QA head groups bind and interact with hydroxide ions at the molecular level is of fundamental importance to developing high-performance AEMs. In this work, the binding and degradation reaction of hydroxide ions with several QA head groups—(a) pyridinium, (b) 1,4-diazabicyclo [2.2.2] octane (DABCO), (c) benzyltrimethylammonium (BTMA), (d) n-methyl piperidinium, (e) guanidium, and (f) trimethylhexylammonium (TMHA)—are investigated using the density functional theory (DFT) method. Results of binding energies (“∆” EBinding) show the following order of the binding strength of hydroxide ions with the six QA head groups: (a) > (c) > (f) > (d) > (e) > (b), suggesting that the group (b) has a high transportation rate of hydroxide ions via QA head groups of the AEM. This trend is in good agreement with the trend of ion exchange capacity from experimental data. Further analysis of the absolute values of the LUMO energies for the six QA head groups suggests the following order for chemical stability: (a) < (b)~(c) < (d) < (e) < (f). Considering the comprehensive studies of the nucleophilic substitution (SN2) degradation reactions for QA head groups (c) and (f), the chemical stability of QA (f) is found to be higher than that of QA (c), because the activation energy (“∆” EA) of QA (c) is lower than that of QA (f), while the reaction energies (“∆” ER) for QA (c) and QA (f) are similar at the different hydration levels (HLs). These results are also in line with the trends of LUMO energies and available chemical stability data found through experiments.  相似文献   

19.
In the hydrogen‐bond patterns of phenyl bis(2‐chlorobenzylamido)phosphinate, C20H19Cl2N2O2P, (I), and N,N′‐bis(2‐chlorobenzyl)‐N′′‐(2,2,2‐trifluoroacetyl)phosphoric triamide, C16H15Cl2F3N3O2P, (II), the O atoms of the related phosphoryl groups act as double H‐atom acceptors, so that the P=O...(H—N)2 hydrogen bond in (I) and the P=O...(H—Namide)2 and C=O...H—NC(O)NHP(O) hydrogen bonds in (II) are responsible for the aggregation of the molecules in the crystal packing. The presence of a double H‐atom acceptor centre is a result of the involvement of a greater number of H‐atom donor sites with a smaller number of H‐atom acceptor sites in the hydrogen‐bonding interactions. This article also reviews structures having a P(O)NH group, with the aim of finding similar three‐centre hydrogen bonds in the packing of phosphoramidate compounds. This analysis shows that the factors affecting the preference of the above‐mentioned O atom to act as a double H‐atom acceptor are: (i) a higher number of H‐atom donor sites relative to H‐atom acceptor centres in molecules with P(=O)(NH)3, (N)P(=O)(NH)2, C(=O)NHP(=O)(NH)2 and (NH)2P(=O)OP(=O)(NH)2 groups, and (ii) the remarkable H‐atom acceptability of this atom relative to the other acceptor centre(s) in molecules containing an OP(=O)(NH)2 group, with the explanation that the N atom bound to the P atom in almost all of the structures found does not take part in hydrogen bonding as an acceptor. Moreover, the differences in the H‐atom acceptability of the phosphoryl O atom relative to the O atom of the alkoxy or phenoxy groups in amidophosphoric acid esters may be illustrated by considering the molecular packing of compounds having (O)2P(=O)(NH) and (O)P(=O)(NH)(N)groups, in which the unique N—H unit in the above‐mentioned molecules almost always selects the phosphoryl O atom as a partner in forming hydrogen‐bond interactions. The P atoms in (I) and (II) are in tetrahedral coordination environments, and the phosphoryl and carbonyl groups in (II) are anti with respect to each other (the P and C groups are separated by one N atom). In the crystal structures of (I) and (II), adjacent molecules are linked via the above‐mentioned hydrogen bonds into a linear arrangement parallel to [100] in both cases, in (I) by forming R22(8) rings and in (II) through a combination of R22(10) and R21(6) rings.  相似文献   

20.
The analysis of total vitamin C content in food is most frequently performed by reducing dehydroascorbic acid to ascorbic acid, which is then assayed with the technique of high-performance liquid chromatography combined with spectrophotometric detection. Tris(2-carboxyethyl)phosphine is currently the only agent in use that efficiently reduces dehydroascorbic acid at pH < 2. Therefore, there is a continued need to search for new reducing agents that will display a high reactivity and stability in acidic solutions. The objective of the study was to verify the applicability of unithiol and tris(hydroxypropyl)phosphine for a reducing dehydroascorbic acid in an extraction medium with pH < 2. The conducted validation of the newly developed method of determining the total content of vitamin C using tris(hydroxypropyl)phosphine indicates its applicability for food analysis. The method allows obtaining equivalent results compared to the method based on the use of tris(2-carboxyethyl)phosphine. The low efficiency of dehydroascorbic acid reduction with the use of unithiol does not allow its application as a new reducing agent in vitamin C analysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号