首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 32 毫秒
1.
Three new complexes, namely [(nicotinic acid)2H]+I, [(2-amino-6-methylpyridine)H]+ (NO3), and the 1:1 complex between 1-isoquinoline carboxylic acid (zwitter ion form) and L-ascorbic acid were synthesized. The IR spectra revealed different types of hydrogen bonds in these compounds. The X-ray structure determination has shown the first compound to consist of a packing of [(nicotinic acid)2H]+ cations and I anions. In the dimeric cation the two nicotinic acid molecules (zwitter ions) are connected through hydrogen bonds (O–HO). Each dimer is further engaged in other hydrogen bonds with adjacent dimers giving 2D layers. The I ion is located at the inversion center. In the second compound the cation and anion are connected via hydrogen bonds formed between oxygen atoms of the NO3 anion and NH and NH2 of the cation generating a layer structure. All atoms are coplanar on mirror planes. In the 1:1 complex the two molecules are connected through hydrogen bonds formed between the two oxygen atoms of the carboxylate group of 1-isoquinoline carboxylic acid (zwitter ion) and the oxygen atoms of the two adjacent hydrogen groups of the L-ascorbic acid molecule. These complex molecules are engaged in other hydrogen bonds with each other forming a 2D system normal to the long b-axis of the unit cell.  相似文献   

2.
Crystals of bis[(2.2.2-cryptand)sodium] bis[aqua(isothiocyanato)(-isothiocyanato)sodium]: 2[Na(C18H36N2O6)]+ · [Na2(NCS)2(-NCS)2(H2O)2]2– (I) were synthesized and studied by X-ray diffraction analysis. The disordered structure of I (a = 12.715 Å, b = 10.458 Å, c = 21.767 Å, = 102.56°, space group P21/n) was solved by the direct method and refined by the full-matrix least-squares method in anisotropic approximation to R = 0.058 from 3896 independent reflections (CAD4 automated diffractometer, MoK ). The crystal consists of two complex ions [I1]+ and [I2]2– (molar ratio 2 : 1). The Na+ cation of the host–guest cation I1 is coordinated by all eight heteroatoms (6O + 2N) of the cryptand ligand. The coordination polyhedron of this Na+ cation is a distorted cube. The atoms of two groups (CH2–CH2 and CH2–O–CH2–CH2) in the cryptand ligand are disordered over two positions. The independent cation Na+ of the centrosymmetric binuclear complex anion I2 is coordinated by one bifurcated O atom of the disordered water molecule and by three N atoms of the SCN ligands (including two bridging ligands). The coordination polyhedron of this Na+ caiotn is a distorted tetrahedron. The complex ions in the crystal structure of I are united by hydrogen bonds.  相似文献   

3.
Crystal structures of [Co(Promp)(Hpromp)] · H2O (I) (where Promp and Hpromp are deprotonated and monoprotonated anions of S-proline-N-mono-3-propionic acid) and (H3O)[Co(Hedta)(CN)] · H2O (II) (where HEdta is monoprotonated anion of ethylenediaminetetraacetic acid) are determined by X-ray diffraction method. The Co coordination octahedron in compound I is formed by two N atoms in trans-positions and by four O atoms of two tridentate ligands, i.e., anions of H2Promp acid, one of which is fully deprotonated, while the other one has protonated carboxyl group of a six-membered aminopropionate metal cycle. Neutral [Co(Promp)(Hpromp)] complexes and water molecules are united by hydrogen bonds into chains along 21 screw axis. Crystals II consist of the complex anions [Co(Hedta)(CN)], hydroxonium cations, and water molecules. The Co coordination octahedron includes two N atoms and three O atoms of ion of ethylenediaminetetraacetic acid, whose one acetate group is not coordinated but protonated; cyanide ion lies in the NCoN plane. Crystals II contain two types of H3O+ ions that are involved in hydrogen bonds in different way.__________Translated from Koordinatsionnaya Khimiya, Vol. 31, No. 8, 2005, pp. 596–605.Original Russian Text Copyright © 2005 by Poznyak, Burshtein.  相似文献   

4.
X-ray diffraction and spectroscopic data for a new Np(V) compound, namely, [NpO2{OC(NH2)2}5](NO3) (I) are presented. Crystals are monoclinic, space group P21, a = 11.142(2) Å, b = 7.6379(9) Å, c = 11.143(2) Å, = 108.9(1)°, Z = 2, V = 897.1(2) Å3. The neptunium atom has a typical pentagonal-bipyramidal environment with five oxygen atoms of the carbamide molecules in the equatorial plane. The nitrate ion is in the outer sphere. Carbamide is a strong molecular ligand with respect to Np(V) and hence, cation–cation bonds of the NpO2 + ions are not realized in structure I. The wave length of the ff transition in the electronic absorption spectra of crystalline complex I and Np(V) in a saturated carbamide solution is virtually the same and is equal to 991 nm.  相似文献   

5.
The bonding of the O-O group in the dicobalt cation 1a [(NH3)6Co2(μ-O2)(μ-OH)(μ-NH2)]3+ was studied by DFT methods (ADF program) and the bridging O2 ligand was characterized as superoxide(O2). In this complex, three bridging ligands connect the two cobalt atoms, forcing a cis conformation of the Co-O-O-Co atoms. A comparison was made with [(NH3)10Co2(μ-O2)]5+, 2a, where a trans arrangement is observed. Superoxide binds more strongly to the dicobalt(III) fragment in 2a than in 1a, both as a result of weaker Pauli repulsion and stronger covalent interaction. It was found that in 1a the electronic structure with one unpaired electron, where cobalt is formally Co(III), d6, and O2 carries one negative charge gives rise to the most stable structure, compared to possibilities with three and five unpaired electrons. The hydrogen bonds in the crystal were analyzed and the interactions between one water molecule or one nitrate ion studied in more detail.  相似文献   

6.
Complex of podand 1,2-bis(2-(o-hydroxyphenoxy)ethyloxy)ethane (L) with potassium thiocyanate, [K2(NCS)2L2] (I) was synthesized and studied using X-ray diffraction analysis: space group P , a = 7.771 Å, b = 11.711 Å, c = 11.965 Å, = 72.22°, = 79.21°, = 89.07°, Z = 1. Structure I was solved by direct method and anisotropically refined by the full-matrix least-squares method to R = 0.040 for all 4370 independent reflections (CAD4 autodiffractometer, MoK ). Structure I contains [K(NCS)L] monomers of the host–guest type united into centrosymmetrical [K2(NCS)2L2] dimers via two bridging OH groups (one group from two L podands). In the monomer, the L podand appears as though to envelope the octacoordinated K+ cation, whose the coordination polyhedron is a strongly distorted hexagonal bipyramid with all six oxygen atoms of the L podand in its base and the N atom of the SCN ligand and the O atom of one of OH group of the neighboring (in dimer) L podand at its axial vertices. Molecules of I in crystal are joined through the O–H···N hydrogen bonds to form broad infinite chains along the x-axis.  相似文献   

7.
Twinned and disordered crystals of solvated bis[aqua(2.2.2-cryptand)calcium] hexa(isothiocyanato)calcium 2[Ca(2.2.2-Crypt)(H2O)]2+ · [Ca(NCS)6]4– · Sol (I), where Sol is acetone and/or ethanol and may be water, were synthesized and studied by X-ray diffraction analysis. Structure I (space group P21/n, a = 11.841 Å, b = 21.787 Å, c = 12.377 Å, = 90.90°) was solved by the direct method and refined by the full-matrix least squares method in anisotropic approximation to R = 0.079 from 4168 independent reflections (CAD4 automated diffractometer, MoK ). In crystal form, complex I exists as the two aforesaid complex ions [I1]2+ and [I2]4– in the molar ratio 2 : 1 united through hydrogen bonds. Complex cation I1 is of the guest–host type. Its Ca2+ cation is coordinated by all eight heteroatoms (6O + 2N) of the cryptand ligand and by the O atom of the water molecule; the coordination polyhedron of this Ca2+ cation (CN 9) is irregular. The Ca2+ cation of complex anion I2 (in the crystallographic center of inversion) is coordinated by six N atoms of six neighboring SCN anionic ligands; the coordination polyhedron of this Ca2+ cation (CN 6) is a slightly distorted octahedron.  相似文献   

8.
Metal Salts of Benzene‐1,2‐di(sulfonyl)amine. 4. Hydrophobically Wrapped Two‐Dimensional Polymers: Crystal Structures of the Isostructural Metal Complexes [M{C6H4(SO2)2N}(H2O)] (M = K, Rb) and of the Structurally Related Ammonium Salt [(NH4){C6H4(SO2)2N}(H2O)] The previously unreported compounds KZ · H2O ( 1 ), RbZ · H2O ( 2 ) and NH4Z · H2O ( 3 ), where Z is Ndeprotonated ortho‐benzenedisulfonimide, are examples of layered inorgano‐organic solids, in which the inorganic component is comprised of metal or ammonium cations, N(SO2)2 groups and water molecules and the outer regions are formed by the planar benzo rings of the anions. The metal complexes 1 and 2 were found to be strictly isostructural, whereas 3 is structurally related to them by a non‐crystallographic mirror plane ( 1 – 3 : monoclinic, space group P21/c, Z = 4; single crystal X‐ray diffraction at low temperatures). In each structure, the five‐membered 1,3,2‐dithiazolide heterocycle possesses an envelope conformation, the N atom lying about 40 pm outside the mean plane of the S–C–C–S moiety. The metal complexes feature two‐dimensional coordination networks interwoven with O–H…O hydrogen bonds originating from the water molecules. The metal centres adopt an irregular nonacoordination formed by five sulfonyl O atoms, two N atoms and two μ2‐bridging water molecules; each M+ is connected to four different anions. When NH4+ is substituted for M+, the metal–ligand bonds are replaced by N+–H…O hydrogen bonds, but the general topology of the lamella is not affected. In the three structures, the lipophilic benzo groups protrude obliquely from the surfaces of the polar lamellae and display marked interlocking between adjacent layers.  相似文献   

9.
Two CoII complexes, Co(phen)(HL)2 ( 1 ) and [Co2(phen)2(H2O)4L2]·H2O ( 2 ) (H2L = HOOC‐(CH2)5‐COOH), were synthesized and structurally characterized on the basis of single crystal X‐ray diffraction data. In complex 1 the Co atoms are tetrahedrally coordinated by two N atoms of one phen ligand and two O atoms of different hydrogenpimelato ligands. Through π—π stacking interactions between carboxyl group and phen ligand, the complex molecules are assembled into 1D columnar chains, which are connected by intermolecular hydrogen bonds. Complex 2 consists of the centrosymmetric dinuclear [Co2(phen)2(H2O)4L2] molecules and hydrogen bonded H2O molecules. The Co atoms are each octahedrally surrounded by two N atoms of one phen ligand and four O atoms from two bis‐monodentate pimelato ligands and two H2O molecules at the trans positions. The results about thermal analyses, which were performed in flowing N2 atmosphere, on both complexes were discussed. Crystal data: ( 1 ) C2/c (no. 15), a = 13.491(1)Å, b = 9.828(1)Å, c = 19.392(2)Å, β = 100.648(1)°, U = 2526.9(4)Å3, Z = 4; ( 2 ) P1 (no. 2), a = 11.558(1)Å, b = 11.947(3)Å, c = 15.211(1)Å, α = 86.17(1)°, β = 75.55(1)°, γ = 69.95(1)°, U = 1910.3(3)Å3, Z = 2.  相似文献   

10.
The reaction of 1-hydrazino-3,3-dimethyl-3,4-dihydroisoquinoline with 9,10-phenanthrenequinone gave (9E)-phenanthrene-9,10-dione[(1Z)-3,3-dimethyl-3,4-dihydroisoquinolin-1(2H)-ylidene]hydrazone (L). The reaction of L with copper(II) bromide gave the complex (LH)[CuBr2]. The crystal structures of the monohydrate L · H2O (I) and the isolated complex (LH)[CuBr2] (II) were determined by X-ray diffraction. The structural units of I are pseudo-centrosymmetric dimers in which the L and water molecules are combined by strong hydrogen bonds. The active H atom is located at the N(1) atom of the isoquinoline fragment of the L molecule. The L molecule occurs in the crystal as the cis, trans isomer with respect to exocyclic C=N bonds at the isoquinoline and phenanthrenequinone fragments, respectively. Complex II has a cation-anion structure. The LH+ cation as the cis, cis isomer is protonated at N(2) and stabilized by two intramolecular hydrogen bonds. In the CuBr2 anion, the copper atom in the oxidation state +1 has a linear coordination, the C-Br bond length is 2.185(4) ± 0.005 ?, and the BrCuBr angle is 179.8(4)°. The main ion-ion interactions in structure II are shortened contacts involving bromine atoms, which combine cations and anions into a three-dimensional framework. Original Russian Text ? V.V. Davydov, V.I. Sokol, N.V. Rychagina, R.V. Linko, M.A. Ryabov, Yu.V. Shklyaev, V.S. Sergienko, 2009, published in Zhurnal Neorganicheskoi Khimii, 2009, Vol. 54, No. 6, pp. 958–970.  相似文献   

11.
Crystals containing three kinds of molecules 1-piperidiniumacetate (II), 1-piperidiniumacetic acid (III) and 2,4,6-trinitrophenolate (picrate, TNP), belong to the monoclinic system, space group P21/c and Z=4, a=12.831(3), b=26.093(5), c=7.157(1) Å, β=101.18(3)°, R=0.0758. The zwitterion molecule (II) is a double acceptor of protons from two molecules of 1-piperidiniumacetic acid (III) (N–HO, 2.735(5) Å and O–HO, 2.472(5) Å), and a donor of proton to the picrate molecule (N–HO, 2.747(5) Å). These three molecules, which have three donor centers and several acceptor groups, form hydrogen-bonded chains parallel to the z axis. The oxygen atoms inactive in these hydrogen bonds, are engaged in the C–HO short contacts, which can be treated as weak hydrogen bonds, and join the chains into a three-dimensional network. The presence of protonated 1-piperidineacetic acid (III) and its zwitterion (II) in the crystal has been confirmed by 13C CP MAS NMR and solid state FTIR spectra.  相似文献   

12.
The pale‐rose compound [(μ‐C6H8O4)4/2Co(μ‐H2O)2Co(H2O)4] · 4 H2O was prepared from adipic acid and CoCO3 in aqueous solution. The crystal structure (monoclinic, P21/n (no. 14), a = 8.061(1), b = 15.160(2), c = 9.708(2) Å, β = 90.939(7)°, Z = 2, R = 0.0405, wR2 = 0.0971) consists of adipate bridged supramolecular [(μ‐C6H8O4)4/2Co(μ‐H2O)2Co(H2O)4] layers and hydrogen bonded H2O molecules. The cobalt atoms Co1 and Co2 are distorted octahedrally coordinated by the O atoms of two bridging trans‐H2O molecules and four bidentate adipate anions (Co1) and by the O atoms of two bridging trans‐H2O molecules and four monodentate H2O molecules (Co2), respectively. Equatorial bonds: d(Co1–O) = 2.048 Å (2 × ), 2.060 Å (2 × ); d(Co2–O) = 2.057 Å (2 × ), 2.072 Å (2 × ). Axial bonds: d(Co1–O) = 2.235 Å (2 × ); d(Co2–O) = 2.156 Å (2 × ).  相似文献   

13.
Two mixed ligand ZnII complexes [Zn(phen)L2/2](H2L) ( 1 ) and [(phen)2Zn(μ‐L)Zn(phen)2]L � 11H2O ( 2 ) with H2L = suc‐cinic acid were prepared and crystallographically characterized. Complex 1 crystallizes in the monoclinic space group C2/c (no. 15) with a = 13.618(1) Å, b = 9.585(1) Å, c = 15.165(1) Å, β = 96.780(6)°, V = 1965.6(3)Å3, Z = 4 and complex 2 in the triclinic space group P 1¯ (no. 2) with a = 12.989(2)Å, b = 14.464(2)Å, c = 18.025(3)Å, α = 90.01(1)°, β = 109.69(1)°, γ = 112.32(1)°, V = 2917.4(8) Å3, Z = 2. 1 consists of succinic acid molecules and 1D zigzag [Zn(phen)(C4H4O4)2/2] polymeric chains, in which the tetrahedrally coordinated Zn atoms are bridged by bis ‐ monodentate succinato ligands. Succinic acid molecules play an important role in supramolecular assemblies of the polymeric chains into 2D layers as well as in the stacking of 2D layers. 2 is composed of [(phen)2Zn(μ‐L)Zn(phen)2]2+ complex cations, succinate anions and hydrogen bonded water molecules. Within the divalent cations, Zn atoms are octahedrally coordinated by four N atoms of two phen ligands and two O atoms of one bis‐chelating succinato ligand. Through the intermolecular π—π stacking interactions, the complex cations form positively charged 2D layers, between which the noncoordinating succinate anions and water molecules are sandwiched.  相似文献   

14.
The acid salt of orthoperiodic acid CsH9I2O12crystallizes in the monoclinic system: base-centered unit cell, space group Cc. Unit cell parameters: a=18.473(5) Å, b= 5.439(2) Å, c= 10.481(3) Å, = 99.73°. The crystal structure consists of layers parallel to the yzcrystallographic axis. The layers are formed by the Cs+ions, the molecules of orthoperiodic acid IO(OH)5, and by the IO2(OH) 4ions and are joined via hydrogen bonds. The studies of proton conductivity of ceramics reveal their transition into a superionic state at temperatures above 40°C.  相似文献   

15.
The aqua complex of podand 1,2-bis(2-(o-hydroxyphenoxy)ethyloxy)ethane (L) with strontium perchlorate of the composition [Sr(ClO4)L(H2O)2]+ · ClO4 · H2O (I) was synthesized and studied using X-ray diffraction analysis: space group P21/c, a = 16.195 Å, b = 11.382 Å, c = 16.646 Å, = 117.01°, Z = 4. The structure was solved by direct method and anisotropically refined by the full-matrix least-squares method to R = 0.069 for 4278 independent reflections (CAD4 autodiffractometer, MoK ). Structure I contains complex cation [Sr(ClO4)L(H2O)2]+ of the host–guest type. The Sr2+ cation (coordination number 9) is coordinated to all six O atoms of the L podand, O atom of a disordered ClO4 ligand, and two O atoms of two water molecules. The coordination polyhedron of Sr2+ is irregular; in a rough approximation, it can be described as a face-centered cube. The crystal structure of I contains an infinite three-dimensional network of the O–H···O hydrogen bonds joining the complex cations, ClO4 anions, and molecules of crystallization water.  相似文献   

16.
Summary The following copper(I) complexes of 4,6-dimethylpyrimidine-2(1H)-thione (HL), its protonated cation (H2L+) and deprotonated anion (L) have been prepared: CuL, Cu(HL)X (X = Cl, Br or I), Cu(HL)2X (X = C1 or Br), Cu2(HL)3Br2, Cu(H2L)X2 (X = Cl or Br), Cu3(HL)2LA2 (A = ClO4 or BF4 ). The i.r. spectra show that in all the HL and L complexes and in the Cu(H2L)Br2 complex, the ligands are S, N coordinated to the metal ion, while in Cu(H2L)Cl2 only the thiocarbonylic sulphur is coordinated, probably bridging two copper(I) atoms. Thev(CuN) (288–317 cm–1 ) andv(CuS) (191–225 cm–1 ) have uniform frequency values in all the complexes. The halide ions are, in all their complexes, wholly or in part coordinated giving twov(CuX) bands which may indicate an asymmetrical Cu-X Cu halide bridging bond.Author to whom all correspondence should be directed.  相似文献   

17.
The complex [Ni(L-H)2] · CHCl3 (I), where L-H is the (9E)-phenanthrene-9,10-dione[(1Z)-3,3-dimethyl-3,4-dihydroisoquinolin-1(2H)-ylidene]hydrazone anion (L), was synthesized for the first time. The crystal structure of I was solved. The L-H and L-H′ anions exist as cis- and trans-isomers and are linked to the central Ni2+ atom in a tridentate chelating mode giving rise to two conjugated five-membered metal rings of different composition (NiN3C and NiONC2) at each anion. The Ni2+ coordination polyhedron is a highly distorted octahedron whose axial positions are occupied by N(3) and N(3)′ atoms. The vertices of the tetrahedrally distorted equatorial base of the octahedron are occupied by the N(1) and N(1)′ atoms of the dihydroisoquinoline fragment (A) and the O(1) and O(1)′ atoms of the phenanthrenequinone fragment (B). Complex I occurs as the cis-isomer. The conformations of the L-H anions in I and the L molecules in L · H2O do not differ much. The randomly disordered CHCl3 solvent molecules in I occupy crystal voids between the centrosymmetric dimeric associates. Spectroscopic (IR and UV-Vis) characteristics of I were obtained.  相似文献   

18.
In the crystal structures of the conformational isomers hydrogen {phosphono[(pyridin‐1‐ium‐3‐yl)amino]methyl}phosphonate monohydrate (pro‐E), C6H10N2O6P2·H2O, (Ia), and hydrogen {phosphono[(pyridin‐1‐ium‐3‐yl)amino]methyl}phosphonate (pro‐Z), C6H10N2O6P2, (Ib), the related hydrogen {[(2‐chloropyridin‐1‐ium‐3‐yl)amino](phosphono)methyl}phosphonate (pro‐E), C6H9ClN2O6P2, (II), and the salt bis(6‐chloropyridin‐3‐aminium) [hydrogen bis({[2‐chloropyridin‐1‐ium‐3‐yl(0.5+)]amino}methylenediphosphonate)] (pro‐Z), 2C5H6ClN2+·C12H16Cl2N4O12P42−, (III), chain–chain interactions involving phosphono (–PO3H2) and phosphonate (–PO3H) groups are dominant in determining the crystal packing. The crystals of (Ia) and (III) comprise similar ribbons, which are held together by N—H...O interactions, by water‐ or cation‐mediated contacts, and by π–π interactions between the aromatic rings of adjacent zwitterions in (Ia), and those of the cations and anions in (III). The crystals of (Ib) and (II) have a layered architecture: the former exhibits highly corrugated monolayers perpendicular to the [100] direction, while in the latter, flat bilayers parallel to the (001) plane are formed. In both (Ib) and (II), the interlayer contacts are realised through N—H...O hydrogen bonds and weak C—H...O interactions involving aromatic C atoms.  相似文献   

19.
The title compound, Na+·C9H7N4O5S·2H2O, presents a Z configuration around the imine C=N bond and an E configuration around the C(O)NH2 group, stabilized by two intra­molecular hydrogen bonds. The packing is governed by ionic inter­actions between the Na+ cation and the surrounding O atoms. The ionic unit, Na+ and 2‐oxo‐3‐semicarbazono‐2,3‐dihydro‐1H‐indole‐5‐sulfonate, forms layers extending in the bc plane. The layers are connected by hydrogen bonds involving the water mol­ecules.  相似文献   

20.
[Co(H2O)2Cl2(H2SeO3)2] (monoclinic, P21/c, Z = 2, a = 519.82(5), b = 1462.6(1), c = 643.09(7) pm, β = 92.51(1)°, Rall = 0.0583) was obtained from CoCl2 and H2SeO3 as purple plate–shaped single crystals. In the compound, the Co2+ ions are octahedrally coordinated by two Cl? ions, two H2O molecules, and two monodentate H2SeO3 molecules, leading to neutral complexes [Co(H2O)2Cl2(H2SeO3)2]. They are connected by hydrogen bonds involving both chlorine and oxygen atoms as acceptor atoms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号