首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Wood is a widely used material because it is environmentally sustainable, renewable and relatively inexpensive. Due to the hygroscopic nature of wood, its physical and mechanical properties as well as the susceptibility to fungal decay are strongly influenced by its moisture content, constantly changing in the course of everyday use. Therefore, the understanding of the water state (free or bound) and its distribution at different moisture contents is of great importance. In this study, changes of the water state and its distribution in a beech sample while drying from the green (fresh cut) to the absolutely dry state were monitored by 1D and 2D 1H NMR relaxometry as well as by spatial mapping of the relaxation times T1 and T2. The relaxometry results are consistent with the model of homogeneously emptying pores in the bioporous system with connected pores. This was also confirmed by the relaxation time mapping results which revealed the moisture transport in the course of drying from an axially oriented early- and latewood system to radial rays through which it evaporates from the branch. The results of this study confirmed that MRI is an efficient tool to study the pathways of water transport in wood in the course of drying and is capable of determining the state of water and its distribution in wood.  相似文献   

2.
Knowledge on moisture transport in wood is important for understanding its utilization, durability and product quality. Moisture transport processes in wood can be studied by Nuclear Magnetic Resonance (NMR) imaging. By combining NMR imaging with relaxometry, the state of water within wood can be identified, i.e. water bound to the cell wall, and free water in the cell lumen/vessel. This paper presents how the transport of water can be monitored and quantified in terms of bound and free water during water uptake and drying. Three types of wood from softwood to hardwood were selected covering a range of low to high density wood; pine sapwood and oak and teak. A calibration is performed to determine the different water states in each different wood type and to convert the NMR signal into moisture content. For all wood types, water transport appeared to be internally limited during both uptake and drying. In case of water uptake, free water was observed only after the cell walls were saturated with bound water. In case of drying, the loss of bound water starts only after vanishing of free water, irrespective of the position. Obviously, there is always a local thermodynamic equilibrium of bound and free water for both uptake and drying. Finally, we determined the effective diffusion coefficient (D eff ). Experimentally determined diffusion constants were compared with those derived by the diffusion models for conceptual understanding of transport mechanism. We found that diffusion in the cell wall fibers plays a critical role in the transport process.  相似文献   

3.
The first drying of wood cell walls from the native state has sometimes been described as producing irreversible structural changes which reduce the accessibility to water, a phenomenon often referred to as hornification. This study demonstrates that while changes do seem to take place, these are more complex than what has hitherto been described. The accessibility of wood cell wall hydroxyls to deuteration in the form of liquid water was not found to be affected by drying, since vacuum impregnation with liquid water restores the native cell wall accessibility. Contrary to this, hydroxyl accessibility to deuteration by water vapour was found to decrease to different levels depending on the drying conditions. Vacuum drying at 60 °C for 3 days reduced the accessibility more than drying for 1 day at 103 °C without vacuum. Drying for 3 days at 103 °C increased the hydroxyl accessibility compared to 1 day. Moreover, the decrease in hydroxyl accessibility to deuteration by water vapour induced by the first drying could be at least partially erased by subsequent vacuum impregnation with liquid water, indicating reversibility. For the drying of solid, non-degraded wood cell walls the results challenge the often supposed process of hornification, understood as a permanent decrease in hydroxyl accessibility to water.  相似文献   

4.
We measured the lattice spacing of the cellulose in sugi (Cryptomeria japonica D. Don) and hinoki (Chamaecyparis obtusa Endl.) cell walls under wet and dry conditions. We gave all specimens repeated wet-and-dry treatments and tried to induce substantial changes in the microstructure of the wood cell wall. Macroscopic dimensions, measured using a micrometer, showed well-known behaviors, that is, shrinkage by drying and swelling by wetting, which were unaffected after the repeated wet-and-dry treatments in both longitudinal and tangential directions. On the other hand, lattice spacing, measured using an X-ray diffractometer, showed different results. In particular, d 200 lattice spacing expanded considerably with drying in the early stages of repeated wet-and-dry treatments. The d 200 lattice spacing in the dried specimen then became gradually smaller in the later stages, whereas no such dynamic change was observed in d 004 lattice spacing throughout the repeated wet-and-dry treatments. Once the d 200 lattice spacing in the dried specimen had become smaller after giving wet-and-dry treatments, it did not recover, even after soaking in distilled water for 1 month. These results suggest that repeated drying and re-swelling caused structural changes in the wood cell wall, specifically an interfacial separation between cellulose microfibrils and matrix substances.  相似文献   

5.
Porous chitosan scaffolds with possible tissue engineering applications were synthesized by using lyophilization and supercritical carbon dioxide (sc.CO2) drying technique. 1% Chitosan (CS) solution in aq. acetic acid was treated with 37% formaldehyde solution; the resulting hydrogels were subjected to solvent-exchange prior to the final treatment procedures. Their morphology, pore structure, and physical properties were characterized by Fourier transform infrared spectroscopy (FTIR), thermal analysis, scanning electron microscopy (SEM), transmission electron microscopy (TEM) and the specific surface areas and porosities of scaffolds were determined by using N2 adsorption. The sc.CO2 treated scaffolds showed a much greater surface area in comparison to the lyophilized one. Hence, sc.CO2 treated scaffolds is better for cell proliferation. We further investigated the bioactivity of sc.CO2 treated scaffolds using simulated body fluid (SBF). The sc.CO2 assisted chitosan scaffold prepared by using green chemistry approach is highly pure and from a hygienic point of view, it is an ideal material for tissue engineering applications.  相似文献   

6.
Silica glass was synthesized form TEOS and deionized water using sol-gel process. To introduce the physicochemical effects of ultrasonic waves, an ultrasonic homogenizer was used to mix reactants instead of adding cosolvents. 2-step method was chosen to separate hydrolysis reaction and condensation reaction, and thus to control the microstructure of wet gels. Wet gels were dried in 5–8 hours without cracks using supercritical drying with ethanol at 300°C and 10.34 MPa. Aerogels thus obtained have hydrophobic surfaces due to the reesterification reactions during supercritical drying. Aerogels were sintered in a tube furnace in the changing atmosphere from N2 through O2 to He. Sudden volume change was started at 1050°C and sintering was completed at 1100°C as expected. Large pores of aerogels allowed fast sintering in 16 and a half hours. Incomplete extraction in supercritical drying step produced crystals during sintering.  相似文献   

7.
Paulownia bark is mostly utilized jointly with wood, but the possibility of a separate valorization through the pressurized extraction of bark bioactives has been assessed. Subcritical water extraction and supercritical CO2 extraction are green technologies allowing shorter times than conventional solvent extraction under atmospheric shaken conditions. Subcritical water extraction was carried out at temperatures ranging from 140 to 240 °C and supercritical CO2 extraction was performed at different pressures (10, 20 and 30 MPa), temperatures (35, 45 and 55 °C) and ethanol concentrations (0, 10 and 15% (w/w)). Subcritical water extraction under a non-isothermal operation during heating up to 160 °C (19 min) provided extraction yields up to 30%, and the extracts contained up to 7% total phenolics with an ABTS (2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid)) radical scavenging capacity equivalent to 35% the activity of Trolox, whereas at 240 °C, the yield decreased to 20%, but the phenolic content reached 21%, and the antiradical activity was equivalent to 85% of Trolox. Supercritical CO2 extraction at 30 MPa, 45 °C and 30 min reached a global yield of 2% after 180 min of extraction, but the product showed very low antiradical capacity. Gallic acid, vanillic acid, vanillin and apigenin were the major phenolic compounds found in the extracts.  相似文献   

8.
Various latex dispersions from vinyl acetate/sodium ethene sulphonate (sodium vinyl sulphonate) copolymers, stabilised by a constant amount of Hostapal BV, a surfactant with poly(ethylene oxide) groups, were investigated by a variety of solid and liquid state nuclear magnetic resonance methods. In order to investigate the influence of sodium ethene sulphonate on the film formation process, the serum and polymer were analysed separately. The stoichiometric monomer composition of the copolymer in the aqueous phase and in the hydrophobic particles was obtained. The ionic comonomer is enriched at the particle surface via its proximity to the applied surfactant by two-dimensional exchange NMR. For investigations of the film formation process, latex dispersions were prepared and dried to form spatially homogeneous films at different defined solid contents. Depending on the chemical composition of a chosen dispersion, NMR allows the investigation of the drying process of the water. The drying process is a function of the ionic strength of the dispersion and the hydrophilicity of the polymer. It is correlated to the drying mechanism of the water within the film. A not fully dried film contains external water outside the particles, water at ionic and non-ionic groups at surfactants in the polymer water interface and, additionally, water in the swollen and mobilised polymer. The distribution of water to these environments is markedly changed by the ionic comonomer, especially close to the end of the drying process.  相似文献   

9.
Ni-La2O3-SiO2 catalysts were prepared by wetness impregnation and sol-gel method followed by conventional drying and supercritical drying, respectively. Their physico-chemical properties and activity for the hydrogenation of m-dinitrobenzene to m-phenylenediamine were investigated by BET, XRD, TPR, H2-TPD and activity tests. The results showed that the structural and catalytic properties of the Ni-La2O3-SiO2 catalysts obviously depended on the preparation method and the drying mode. The catalyst prepared by the sol-gel method in combination with conventional drying exhibited the highest catalytic activity among the catalysts tested, attributable to its well-dispersed nickel particles and larger active nickel surface area.  相似文献   

10.
A comparative analysis of properties of SiO2–TiO2 binary aerogels prepared by supercritical drying using different supercritical fluids (isopropanol, hexafluoroisopropanol, methyl tert-butyl ether, and CO2) has been performed. The use of different supercritical fluids allows preparation of both homogeneous amorphous SiO2–TiO2 binary aerogels (by supercritical drying in hexafluoroisopropanol and CO2) and composite aerogels containing nanocrystalline anatase (by supercritical drying in isopropanol and methyl tert-butyl ether). The thermal treatment of the aerogels at temperatures up to 600°C does not lead to considerable change in the porous structure and phase composition of the aerogels.  相似文献   

11.
干燥段是生物质热解的第一个过程.采用热分析仪研究了杉木木屑干燥段质量和热量的变化,推导了非等温干燥动力学模型,探讨了热质传输机理.结果表明,随着温度的升高,木屑含湿量迅速下降,80℃左右出现一个明显的失重峰;非等温干燥动力学Page模型能很好地模拟木屑干燥过程,木屑干燥活化能为12.6 kJ/mol;水分传输与热量传递...  相似文献   

12.
Nanocrystalline aerogel VOx/MgO catalysts for the oxidative dehydrogenation of propane with high surface area and uniform vanadium distribution were synthesized by co-gelation followed by supercritical drying. The catalysts were shown to have superior performance compared to nanocrystalline VOx/MgO catalysts prepared by impregnation.  相似文献   

13.
Summary Water was added to CO2 by saturation to increase the solvation power of the mobile phase in supercritical fluid chromatography. The saturation was performed at a temperature above the boiling point of water (100°C) to increase the amount of water which could be loaded homogeneously into the CO2 (2.5–3.0 mol% water as compared to about 0.25 mol% water at 25°C). A linear composition of water was produced by altering the density of the CO2 during saturation. Modifications to the injector and CO2 transfer lines prevented phase separation as a result of the instrumentation used in capillary supercritical fluid chromatography (SFC). After fitting vapor-liquid equilibria data to pressure, density, and temperature conditions, approximately 2.5–3.0 mol% of water was introduced in a linear gradient at 110°C. The effect of water on SFC performance was evaluated with standard steroid compounds. This paper provides further evidence for the need to examine vapor-liquid equilibria data prior to SFC.  相似文献   

14.
Lactic acid fermentation increases the bioactive properties of shrimp waste. Astaxanthin is the principal carotenoid present in shrimp waste, which can be found esterified in the liquid fraction (liquor) after its lactic acid fermentation. Supercritical CO2 technology has been proposed as a green alternative to obtain astaxanthin from fermented shrimp waste. This study aimed to optimize astaxanthin extraction by supercritical CO2 technology from fermented liquor of shrimp waste and study bioaccessibility using simulated gastrointestinal digestion (GD) of the optimized extract. A Box–Behnken design with three variables (pressure, temperature, and flow rate) was used to optimize the supercritical CO2 extraction. The optimized CO2 extract was obtained at 300 bar, 60 °C, and 6 mL/min, and the estimated characteristics showed a predictive extraction yield of 11.17%, antioxidant capacity of 1.965 mmol of Trolox equivalent (TE)/g, and astaxanthin concentration of 0.6353 µg/g. The experiment with optimal conditions performed to validate the predicted values showed an extraction yield of 12.62%, an antioxidant capacity of 1.784 mmol TE/g, and an astaxanthin concentration of 0.52 µg/g. The astaxanthin concentration decreased, and the antioxidant capacity of the optimized extract increased during gastrointestinal digestion. In conclusion, our optimized supercritical CO2 process is suitable for obtaining astaxanthin from shrimp by-products after lactic acid fermentation.  相似文献   

15.
A series of fluorinated bis-urea and bis-amide derivatives were synthesized from fluorinated amines and explored as surface modifiers for nonwoven substrates. A majority of these derivatives showed excellent gelation properties both in organic solvents as well as in supercritical carbon dioxide (scCO2) at concentrations ranging from 0.3 to 3 wt%. Gelation in the presence of a nonwoven substrate led to a gel-impregnated surface, which upon drying produced a composite with porous microstructure morphology on the surface. The composites thus produced showed high water and hexadecane contact angles, indicative of excellent hydrophobic and lyophobic properties. The superior hydrophobic and oleophobic behaviors observed in these composites are attributed to a combination of increased surface roughness and the presence of fluoroalkyl functionalities in the gelator backbone.  相似文献   

16.
NMR cryoporometry has been used for investigating the porosity changes of bleached wood pulp upon drying. This NMR method follows the same principles as thermoporosimetry, which has been used for the same purpose during the last decade and makes it possible to investigate porous material in the water-swollen state. In this study bleached softwood kraft pulp was exposed to a series of drying procedures where the decrease in porosity within the fiber cell wall could be characterized for pore radii below 100 nm. This decrease in porosity is called hornification, which is an irreversible collapse of the fiber wall structure during drying and results in decreased uptake of water and reduced swelling of the fiber upon rewetting. Our results have been compared to the traditionally used water retention value (WRV) and correlates well with these. Furthermore, this NMR method could show the reduction of hornification when adsorbing the hemicellulose glucuronoxylan to the fiber.  相似文献   

17.
王伟彬  银建中 《化学进展》2008,20(4):441-449
目前已知的绿色溶剂主要包括超临界流体(Supercritical fluids,SCFs)、离子液体(Ionic liquids,ILs)、二氧化碳膨胀液体(CO2 expanded liquids, CXLs)、水以及上述溶剂的混合物等。其中,由超临界CO2(Supercritical CO2,SCCO2)与ILs混合而构成的新兴溶剂,因为化学热力学方面的特性,成为近年来研究的热点,未来很有发展前景。本文回顾了目前为止在该领域所开展的工作,总结了影响SCCO2与IL相行为的主要因素。包括温度、压力、ILs的含水量、ILs的阴离子、ILs的阳离子、ILs的摩尔体积以及助溶剂等。同时分析了ILs/SCCO2与溶质形成的多元混合物相行为的成因。介绍了ILs/CO2在萃取、反萃取、膜分离、反胶束、萃取与反应耦合等分离方面的应用。由于传统的单元操作很难满足无污染和对过程集成的要求,因而含有ILs/ SCCO2的分离反应耦合过程将是未来是实现清洁生产的发展方向。  相似文献   

18.
The dependent relation between temperature and pressure of supercritical CO2+ ethanol binary system under the pressure range from 5 to 10 MPa with the variety of densities and mole fractions of ethanol that range from 0 to 2% was investigated by the static visual method in a constant volume. The critical temperature and pressure were experimentally determined simultaneously. The PTρ figures at different ethanol contents were described based on the determined pressure and temperature data, from which pressure of supercritical CO2 + ethanol binary system was found to increase linearly with the increasing temperature. P-T lines show certain convergent feature in a specific concentration of ethanol and the convergent points shift to the region of higher temperature and pressure with the increasing ethanol compositions. Furthermore, the effect of density and ethanol concentration on the critical point of CO2 + ethanol binary system was discussed in details. Critical points increase linearly with the increasing mole fraction of ethanol in specific density and critical points change at different densities. The critical compressibility factors Zc of supercritical CO2 + ethanol binary systems at different compositions of ethanol were calculated and Z c figure was obtained accordingly. It was found from Z c figure that critical compressibility factors of supercritical CO2 unitary or binary systems decline linearly with the increasing density, by which the critical point can be predicted precisely.  相似文献   

19.
D. Pyo  D. Ju 《Chromatographia》1994,38(1-2):79-82
Summary Adding various components to supercritical carbon dioxide in supercritical fluid chromatography can extend or significantly alter the solvating properties. Polar samples which are difficult to analyze with pure supercritical CO2 because of their high polarity can be separated by addidng polar modifiers. In this paper, a new mixing method using an HPLC filter for adding polar modifier to CO2 is described. Although several filters were tried, only one could keep the amount of modifier in the mobile phase constant for a long time. The amount of water or methanol dissolved in supercritical CO2 was measured by an amperometric microsensor made of a thin film of perfluorosulfonate ionomer (PFSI).  相似文献   

20.
A copper-based catalyst can be utilized to synthesize methanol from syngas containing carbon dioxide as well as water at low temperature and low pressure. However, the agglomeration of the metallic copper and zinc oxide decreased the catalyst surface area and the Cu-specific surface area. In order to prevent the sintering, the supercritical CO2 was used to extract water from the catalyst precursor. Our results demonstrate that the Cu-specific surface area was the essential factor to affect the catalytic activity. A larger Cu-specific surface area would cause higher methanol synthesis activity. The optimized supercritical CO2 drying condition was at 308?K and 8.0?MPa for 3?h when the methanol yield reached 44.8%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号