首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
Curcumin, the dietary polyphenol isolated from Curcuma longa (turmeric), is commonly used as an herb and spice worldwide. Because of its bio-pharmacological effects curcumin is also called “spice of life”, in fact it is recognized that curcumin possesses important proprieties such as anti-oxidant, anti-inflammatory, anti-microbial, antiproliferative, anti-tumoral, and anti-aging. Neurodegenerative diseases such as Alzheimer’s Diseases, Parkinson’s Diseases, and Multiple Sclerosis are a group of diseases characterized by a progressive loss of brain structure and function due to neuronal death; at present there is no effective treatment to cure these diseases. The protective effect of curcumin against some neurodegenerative diseases has been proven by in vivo and in vitro studies. The current review highlights the latest findings on the neuroprotective effects of curcumin, its bioavailability, its mechanism of action and its possible application for the prevention or treatment of neurodegenerative disorders.  相似文献   

2.
Many observational and clinical studies have shown that consumption of diets rich in plant polyphenols have beneficial effects on various diseases such as cancer, obesity, diabetes, cardiovascular diseases, and neurodegenerative diseases (NDDs). Animal and cellular studies have indicated that these polyphenolic compounds contribute to such effects. The representative polyphenols are epigallocatechin-3-O-gallate in tea, chlorogenic acids in coffee, resveratrol in wine, and curcumin in curry. The results of human studies have suggested the beneficial effects of consumption of these foods on NDDs including Alzheimer’s and Parkinson’s diseases, and cellular animal experiments have provided molecular basis to indicate contribution of these representative polyphenols to these effects. This article provides updated information on the effects of these foods and their polyphenols on NDDs with discussions on mechanistic aspects of their actions mainly based on the findings derived from basic experiments.  相似文献   

3.
Celastrol, the most abundant compound derived from the root of Tripterygium wilfordii, largely used in traditional Chinese medicine, has shown preclinical and clinical efficacy for a broad range of disorders, acting via numerous mechanisms, including the induction of the expression of several neuroprotective factors, the inhibition of cellular apoptosis, and the decrease of reactive oxygen species (ROS). Given the crucial implication of these pathways in the pathogenesis of Central Nervous System disorders, both in vitro and in vivo studies have focused their attention on the possible use of this compound in these diseases. However, although most of the available studies have reported significant neuroprotective effects of celastrol in cellular and animal models of these pathological conditions, some of these data could not be replicated. This review aims to discuss current in vitro and in vivo lines of evidence on the therapeutic potential of celastrol in neurodegenerative diseases, including Alzheimer’s and Parkinson’s diseases, amyotrophic lateral sclerosis, Huntington’s disease, multiple sclerosis, and cadmium-induced neurodegeneration, as well as in psychiatric disorders, such as psychosis and depression. In vitro and in vivo studies focused on celastrol effects in cerebral ischemia, ischemic stroke, traumatic brain injury, and epilepsy are also described.  相似文献   

4.
Pterygium is a progressive disease of the human eye arising from sub-conjunctival tissue and extending onto the cornea. Due to its invasive growth, pterygium can reach the pupil compromising visual function. Currently available medical treatments have limited success in suppressing efficiently the disease. Previous studies have demonstrated that curcumin, polyphenol isolated from the rhizome of Curcuma longa, induces apoptosis of human pterygium fibroblasts in a dose- and time-dependent manner showing promising activity in the treatment of this ophthalmic disease. However, this molecule is not very soluble in water in either neutral or acidic pH and is only slightly more soluble in alkaline conditions, while its dissolving in organic solvents drastically reduces its potential use for biomedical applications. A nanoformulation of curcumin stabilized silver nanoparticles (Cur-AgNPs) seems an effective strategy to increase the bioavailability of curcumin without inducing toxic effects. In fact, silver nitrates have been used safely for the treatment of many ophthalmic conditions and diseases for a long time and the concentration of AgNPs in this formulation is quite low. The synthesis of this new compound was achieved through a modified Bettini’s method adapted to improve the quality of the product intended for human use. Indeed, the pH of the reaction was changed to 9, the temperature of the reaction was increased from 90 °C to 100 °C and after the synthesis the Cur-AgNPs were dispersed in Borax buffer using a dialysis step to improve the biocompatibility of the formulation. This new compound will be able to deliver both components (curcumin and silver) at the same time to the affected tissue, representing an alternative and a more sophisticated strategy for the treatment of human pterygium. Further in vitro and in vivo assays will be required to validate this formulation.  相似文献   

5.
Emerging literature suggests that dietary lutein may have important functions in cognitive health, but there is not enough data to substantiate its effects in human cognition. The current study was intended to determine the overall effect of lutein on the main domains of cognition in the adult population based on available placebo randomized-controlled trials. Literature searches were conducted in PubMed, AGRICOLA, Scopus, MEDLINE, and EMBASE on 14 November 2020. The effect of lutein on complex attention, executive function and memory domains of cognition were assessed by using an inverse-variance meta-analysis of standardized mean differences (SMD) (Hedge’s g method). Dietary lutein was associated with slight improvements in cognitive performance in complex attention (SMD 0.02, 95% CI −0.27 to 0.31), executive function (SMD 0.13, 95% CI −0.26 to 0.51) and memory (SMD 0.03, 95% CI −0.26 to 0.32), but its effect was not significant. Change-from-baseline analysis revealed that lutein consumption could have a role in maintaining cognitive performance in memory and executive function. Although dietary lutein did not significantly improve cognitive performance, the evidence across multiple studies suggests that lutein may nonetheless prevent cognitive decline, especially executive function. More intervention studies are needed to validate the role of lutein in preventing cognitive decline and in promoting brain health.  相似文献   

6.
A water-free, ternary solvent mixture consisting of a natural deep eutectic solvent (NADES), ethanol, and triacetin was investigated concerning its ability to dissolve and extract curcumin from Curcuma longa L. To this purpose, 11 NADES based on choline chloride, acetylcholine, and proline were screened using UV–vis measurements. A ternary phase diagram with a particularly promising NADES, based on choline chloride and levulinic acid was recorded and the solubility domains of the monophasic region were examined and correlated with the system’s structuring via light scattering experiments. At the optimum composition, close to the critical point, the solubility of curcumin could be enhanced by a factor of >1.5 with respect to acetone. In extraction experiments, conducted at the points of highest solubility and evaluated via HPLC, a total yield of ~84% curcuminoids per rhizome could be reached. Through multiple extraction cycles, reusing the extraction solvent, an enrichment of curcuminoids could be achieved while altering the solution. When counteracting the solvent change, even higher concentrated extracts can be obtained.  相似文献   

7.
Alzheimer’s disease (AD) is one of the most common neurodegenerative diseases leading to dementia. Despite research efforts, currently there are no effective pharmacotherapeutic options for the prevention and treatment of AD. Recently, numerous studies highlighted the beneficial effects of curcumin (CUR), a natural polyphenol, in the neuroprotection. Especially, its dual antioxidant and anti-inflammatory properties attracted the interest of researchers. In fact, besides its antioxidant and anti-inflammatory properties, this biomolecule is not degraded in the intestinal tract. Additionally, CUR is able to cross the blood–brain barrier and could therefore to be used to treat neurodegenerative pathologies associated with oxidative stress, inflammation and apoptosis. The present study aimed to assess the ability of CUR to induce neuronal protective and/or recovery effects on a rat model of neurotoxicity induced by aluminum chloride (AlCl3), which mimics the sporadic form of Alzheimer’s disease. Our results showed that treatment with CUR enhances pro-oxidant levels, antioxidant enzymes activities and anti-inflammatory cytokine production and decreases apoptotic cells in AlCl3-exposed hippocampus rats. Additionally, histopathological analysis of hippocampus revealed the potential of CUR in decreasing the hallmarks in the AlCl3-induced AD. We also showed that CUR post-treatment significantly improved the behavioral, oxidative stress and inflammation in AlCl3-exposed rats. Taken together, our data presented CUR as a nutraceutical potential through its protective effects that are more interesting than recovery ones in sporadic model of AD.  相似文献   

8.
Curcumin is the primary polyphenol in turmeric’s curcuminoid class. It has a wide range of therapeutic applications, such as anti-inflammatory, antioxidant, antidiabetic, hepatoprotective, antibacterial, and anticancer effects against various cancers, but has poor solubility and low bioavailability. Objective: To improve curcumin’s bioavailability, plasma concentration, and cellular permeability processes. The nanocurcumin approach over curcumin has been proven appropriate for encapsulating or loading curcumin (nanocurcumin) to increase its therapeutic potential. Conclusion: Though incorporating curcumin into nanocurcumin form may be a viable method for overcoming its intrinsic limitations, and there are reasonable concerns regarding its toxicological safety once it enters biological pathways. This review article mainly highlights the therapeutic benefits of nanocurcumin over curcumin.  相似文献   

9.
Amyloidosis is a term referring to a group of various protein-misfolding diseases wherein normally soluble proteins form aggregates as insoluble amyloid fibrils. How, or whether, amyloid fibrils contribute to tissue damage in amyloidosis has been the topic of debate. In vitro studies have demonstrated the appearance of small globular oligomeric species during the incubation of amyloid beta peptide (Aβ). Nerve biopsy specimens from patients with systemic amyloidosis have suggested that globular structures similar to Aβ oligomers were generated from amorphous electron-dense materials and later developed into mature amyloid fibrils. Schwann cells adjacent to amyloid fibrils become atrophic and degenerative, suggesting that the direct tissue damage induced by amyloid fibrils plays an important role in systemic amyloidosis. In contrast, there is increasing evidence that oligomers, rather than amyloid fibrils, are responsible for cell death in neurodegenerative diseases, particularly Alzheimer’s disease. Disease-modifying therapies based on the pathophysiology of amyloidosis have now become available. Aducanumab, a human monoclonal antibody against the aggregated form of Aβ, was recently approved for Alzheimer’s disease, and other monoclonal antibodies, including gantenerumab, solanezumab, and lecanemab, could also be up for approval. As many other agents for amyloidosis will be developed in the future, studies to develop sensitive clinical scales for identifying improvement and markers that can act as surrogates for clinical scales should be conducted.  相似文献   

10.
Cognitive decline in dementia is associated with deficiency of the cholinergic system. In this study, five mono-carbonyl curcumin analogs were synthesized, and on the basis of their promising in vitro anticholinesterase activities, they were further investigated for in vivo neuroprotective and memory enhancing effects in scopolamine-induced amnesia using elevated plus maze (EPM) and novel object recognition (NOR) behavioral mice models. The effects of the synthesized compounds on the cholinergic system involvement in the brain hippocampus and their binding mode in the active site of cholinesterases were also determined. Compound h2 (p < 0.001) and h3 (p < 0.001) significantly inhibited the cholinesterases and reversed the effects of scopolamine by significantly reducing TLT (p < 0.001) in EPM, while (p < 0.001) increased the time exploring the novel object. The % discrimination index (DI) was significantly increased (p < 0.001) in the novel object recognition test. The mechanism of cholinesterase inhibition was further validated through molecular docking study using MOE software. The results obtained from the in vitro, in vivo and ex vivo studies showed that the synthesized curcumin analogs exhibited significantly higher memory-enhancing potential, and h3 could be an effective neuroprotective agent. However, more study is suggested to explore its exact mechanism of action.  相似文献   

11.
Brain G-protein coupled receptors have been hypothesized to be potential targets for maintaining or restoring cognitive function in normal aged individuals or in patients with neurodegenerative disease. A number of recent reports suggest that activation of melanocortin receptors (MCRs) in the brain can significantly improve cognitive functions of normal rodents and of different rodent models of the Alzheimer’s disease. However, the potential impact of normative aging on the expression of MCRs and their potential roles for modulating cognitive function remains to be elucidated. In the present study, we first investigated the expression of these receptors in six different brain regions of young (6 months) and aged (23 months) rats following assessment of their cognitive status. Correlation analysis was further performed to reveal potential contributions of MCR subtypes to spatial learning and memory. Our results revealed statistically significant correlations between the expression of several MCR subtypes in the frontal cortex/hypothalamus and the hippocampus regions and the rats’ performance in spatial learning and memory only in the aged rats. These findings support the hypothesis that aging has a direct impact on the expression and function of MCRs, establishing MCRs as potential drug targets to alleviate aging-induced decline of cognitive function.  相似文献   

12.
Dementia is one of the most disabling non-motor symptoms in Parkinson’s disease (PD). Unlike in Alzheimer’s disease, the vascular pathology in PD is less documented. Due to the uncertain role of commonly investigated metabolic or vascular factors, e.g., hypertension or diabetes, other factors corresponding to PD dementia have been proposed. Associated dysautonomia and dopaminergic treatment seem to have an impact on diurnal blood pressure (BP) variability, which may presumably contribute to white matter hyperintensities (WMH) development and cognitive decline. We aim to review possible vascular and metabolic factors: Renin-angiotensin-aldosterone system, vascular endothelial growth factor (VEGF), hyperhomocysteinemia (HHcy), as well as the dopaminergic treatment, in the etiopathogenesis of PD dementia. Additionally, we focus on the role of polymorphisms within the genes for catechol-O-methyltransferase (COMT), apolipoprotein E (APOE), vascular endothelial growth factor (VEGF), and for renin-angiotensin-aldosterone system components, and their contribution to cognitive decline in PD. Determining vascular risk factors and their contribution to the cognitive impairment in PD may result in screening, as well as preventive measures.  相似文献   

13.
Chrysin, a herbal bioactive molecule, exerts a plethora of pharmacological effects, including anti-oxidant, anti-inflammatory, neuroprotective, and anti-cancer. A growing body of evidence has highlighted the emerging role of chrysin in a variety of neurological disorders, including Alzheimer’s and Parkinson’s disease, epilepsy, multiple sclerosis, ischemic stroke, traumatic brain injury, and brain tumors. Based on the results of recent pre-clinical studies and evidence from studies in humans, this review is focused on the molecular mechanisms underlying the neuroprotective effects of chrysin in different neurological diseases. In addition, the potential challenges, and opportunities of chrysin’s inclusion in the neurotherapeutics repertoire are critically discussed.  相似文献   

14.
Neuroinflammation and cyclooxygenase-2 (COX-2) upregulation are associated with the pathogenesis of degenerative brain diseases such as Alzheimer’s disease (AD), Parkinson’s disease (PD), amyotrophic lateral sclerosis (ALS), epilepsy, and a response to traumatic brain injury (TBI) or stroke. COX-2 is also induced in acute pain, depression, schizophrenia, various cancers, arthritis and in acute allograft rejection. Positron emission tomography (PET) imaging allows for the direct measurement of in vivo COX-2 upregulation and thereby enables disease staging, therapy evaluation and aid quantifying target occupancy of novel nonsteroidal anti-inflammatory drugs or NSAIDs. Thus far, no clinically useful radioligand is established for monitoring COX-2 induction in brain diseases due to the delay in identifying qualified COX-2-selective inhibitors entering the brain. This review examines radiolabeled COX-2 inhibitors reported in the past decade and identifies the most promising radioligands for development as clinically useful PET radioligands. Among the radioligands reported so far, the three tracers that show potential for clinical translation are, [11CTMI], [11C]MC1 and [18F]MTP. These radioligands demonstrated BBB permeablity and in vivo binding to constitutive COX-2 in the brain or induced COX-2 during neuroinflammation.  相似文献   

15.
The nutrients and their potential benefits are a new field of study in modern medicine for their positive impact on health. Curcumin, the yellow polyphenolic compound extracted from Curcuma longa species, is widely used in traditional Ayurvedic medicine to prevent and contrast many diseases, considering its antioxidant, immunomodulatory, anti-inflammatory, anti-microbial, cardio-protective, nephron-protective, hepato-protective, anti-neoplastic, and anti-rheumatic proprieties. In recent years, the investigations of curcumin have been focused on its application to aging and age-associated diseases. Aging is a physiological process in which there is a decreasing of cellular function due to internal or external stimuli. Oxidative stress is one of the most important causes of aging and age-related diseases. Moreover, many age-related disorders such as cancer, neuroinflammation, and infections are due to a low-grade chronic systemic inflammation. Curcumin acting on different proteins is able to contrast both oxidative stress than inflammation. In the brain, curcumin is able to modulate inflammation induced by microglia. Finally in brain tumors curcumin is able to reduce tumor growth by inhibition of telomerase activity. This review emphasizes the anti-aging role of curcumin focusing on its mechanism to counteract aging in the brain. Moreover, new formulations to increase the bioavailability of curcumin are discussed.  相似文献   

16.
Human skin is colonized by diverse commensal microbes, making up the skin microbiota (SM), contributing to skin integrity and homeostasis. Many of the beneficial effects aroused by the SM are exerted by microbial metabolites such as short-chain fatty acids (SCFAs), including butyric acid. The SCFAs can be used in cosmetic formulations against skin diseases to protect SM by preserving and/or restoring their natural balance. Unpleasant sensorial properties and unfavorable physico-chemical properties of butyrate strongly limit its cosmetic use. In contrast, some butyrate derivatives, including phenylalanine butyramide (C13H18N2O2, FBA), a solid form of butyric acid, are odorless while retaining the pharmacokinetic properties and safety profile of butyric acid. This study assessed the FBA’s permeation across the skin and its soothing and anti-reddening potential to estimate its cosmetic application. The dosage method used to estimate FBA’s levels was validated to be sure of analytical results. The FBA diffusion tests were estimated in vitro using a Franz-type vertical diffusion cell. The soothing action was evaluated in vivo by Colorimeter CL400, measuring the erythema index. The results suggest that the FBA represents an innovative way to exploit the benefits of butyric acid in the cosmetic fields since it cannot reach the bloodstream, is odorless, and has a significative soothing action (decrease the erythema index −15.7% after 30′, and −17.8% after 60′).  相似文献   

17.
The dysregulation of Notch signaling is associated with a wide variety of different human cancers. Notch signaling activation mostly relies on the activity of the γ-secretase enzyme that cleaves the Notch receptors and releases the active intracellular domain. It is well-documented that γ-secretase inhibitors (GSIs) block the Notch activity, mainly by inhibiting the oncogenic activity of this pathway. To date, several GSIs have been introduced clinically for the treatment of various diseases, such as Alzheimer’s disease and various cancers, and their impacts on Notch inhibition have been found to be promising. Therefore, GSIs are of great interest for cancer therapy. The objective of this review is to provide a systematic review of in vitro and in vivo studies for investigating the effect of GSIs on various cancer stem cells (CSCs), mainly by modulation of the Notch signaling pathway. Various scholarly electronic databases were searched and relevant studies published in the English language were collected up to February 2020. Herein, we conclude that GSIs can be potential candidates for CSC-targeting therapy. The outcome of our study also indicates that GSIs in combination with anticancer drugs have a greater inhibitory effect on CSCs.  相似文献   

18.
Poor aqueous solubility of active compounds is a major issue in today’s drug delivery. In this study the smartFilm-technology was exploited to improve the dermal penetration efficacy of a poorly soluble active compound (curcumin). Results were compared to the dermal penetration efficacy of curcumin from curcumin bulk suspensions and nanocrystals, respectively. The smartFilms enabled an effective dermal and transdermal penetration of curcumin, whereas curcumin bulk- and nanosuspensions were less efficient when the curcumin content was similar to the curcumin content in the smartFilms. Interestingly, it was found that increasing numbers of curcumin particles within the suspensions increased the passive dermal penetration of curcumin. The effect is caused by an aqueous meniscus that is created between particle and skin if the dispersion medium evaporates. The connecting liquid meniscus causes a local swelling of the stratum corneum and maintains a high local concentration gradient between drug particles and skin. Thus, leading to a high local passive dermal penetration of curcumin. The findings suggest a new dermal penetration mechanism for active compounds from nano-particulate drug delivery systems, which can be the base for the development of topical drug products with improved penetration efficacy in the future.  相似文献   

19.
In this study, we report the preparation of new mono-charged benzoporphyrin complexes by reaction of the appropriate neutral benzoporphyrin with (2,2′-bipyridine)dichloroplatinum(II) and of the analogs’ derivatives synthesized through alkylation of the neutral scaffold with iodomethane. All derivatives were incorporated into polyvinylpyrrolidone (PVP) micelles. The ability of the resultant formulations to generate reactive oxygen species was evaluated, mainly the singlet oxygen formation. Then, the capability of the PVP formulations to act as photosensitizers against bladder cancer cells was assessed. Some of the studied formulations were the most active photosensitizers causing a decrease in HT-1376 cells’ viability. This creates an avenue to further studies related to bladder cancer cells.  相似文献   

20.
Common wheat (Triticum aestivum), one of the world’s most consumed cereal grains, is known for its uses in baking and cooking in addition to its medicinal uses. As this plant’s medical benefits are enormous and scattered, this narrative review was aimed at describing the pharmacological activities, phytochemistry, and the nutritional values of Triticum aestivum. It is a good source of dietary fiber, resistant starch, phenolic acids, alkylresorcinols, lignans, and diverse antioxidant compounds such as carotenoids, tocopherols and tocotrienols. These constituents provide Triticum aestivum with a wide range of pharmacological properties, including anticancer, antimicrobial, antidiabetic, hypolipemic, antioxidant, laxative, and moisturizing effects. This review summarized the established benefits of wheat in human health, the mode of action, and different clinical, in vitro and in vivo studies for different varieties and cultivars. This review also gives an insight for future research into the better use of this plant as a functional food. More clinical trials, in vivo and in vitro studies are warranted to broaden the knowledge about the effect of Triticum aestivum on nutrition-related diseases prevention, and physical and mental well-being sustenance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号