首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Excessive use of nitrogen fertilizer in intensively managed agriculture has resulted in abundant accumulation of nitrate in soil, which limits agriculture sustainability. How to reduce nitrate content is the key to alleviate secondary soil salinization. However, the microorganisms used in soil remediation cause some problems such as weak efficiency and short survival time. In this study, seaweed polysaccharides were used as stimulant to promote the rapid growth and safer nitrate removal of denitrifying bacteria. Firstly, the growth rate and NO3-N removal capacity of three kinds of denitrifying bacteria, Bacillus subtilis (BS), Pseudomonas stutzeri (PS) and Pseudomonas putida (PP), were compared. The results showed that Bacillus subtilis (BS) had a faster growth rate and stronger nitrate removal ability. We then studied the effects of Enteromorpha linza polysaccharides (EP), carrageenan (CA), and sodium alginate (AL) on growth and denitrification performance of Bacillus subtilis (BS). The results showed that seaweed polysaccharides obviously promoted the growth of Bacillus subtilis (BS), and accelerated the reduction of NO3-N. More importantly, the increased NH4+-N content could avoid excessive loss of nitrogen, and less NO2-N accumulation could avoid toxic effects on plants. This new strategy of using denitrifying bacteria for safely remediating secondary soil salinization has a great significance.  相似文献   

2.
Wastewater discharged from cheese industries is often characterized by high values of organic pollutants, solids, and nutrients. An aerated trickling biofilter using peat and perlite as filter media was employed in a pilot-scale level in order to evaluate the performance of biofilter for removal of pollutants from cheese industry wastewater. The biofilter was operated for a period of 33 days under laboratory conditions, and several parameters were monitored. The results showed a significant improvement in the quality of treated effluent. The maximum removal efficiencies of chemical oxygen demand and biological oxygen demand were 99.2 and 99.9 %, respectively. Significant reduction in total suspended solids (>96 %) was also achieved. A stable ammoniacal-nitrogen (NH4-N) removal was accompanied by biofilter. On an average, NH4-N and total nitrogen decreased by 98.7 and 72 %, respectively, with a significant portion of NH4-N being converted to nitrate-nitrogen (NO3-N). Also, a molecular approach based on 16S rDNA was employed to analyze the bacterial community composition present in the biofilter. A comparative sequence analysis of excised denaturing gradient gel electrophoresis bands revealed the presence of diverse groups of bacteria belonging to α- and β-Proteobacteria and Bacteroidetes phylum. We conclude from the results that the use of trickling biofilter is highly effective and a potential treatment method for polishing cheese industry wastewater before being discharged into the local environment.  相似文献   

3.
The Kleier model and Carrier-mediated theory are effective for molecularly designing pesticides with phloem mobility. However, the single Kleier model or Carrier-mediated theory cannot achieve a reliable explanation of the phloem mobility of all exogenous substances. A detailed investigation of the two models and the scope of their applications can provide a more accurate and highly efficient basis for the guidance of the design and development of phloem-mobile pesticides. In the present paper, a strategy using active ingredient-amino acid conjugates as mode compounds is developed based on Carrier-mediated theory. An N-alkylated amino acid is used to improve the pesticide’s physicochemical properties following the Kleier model, thus allowing the conjugates to fall on the predicted and more accessible transportation region of phloem. Moreover, the influence of this movement on phloem is inspected by the Kleier model and Carrier-mediated theory. To verify this strategy, a series of N-alkylated phenazine-1-carboxylic acid-glycine compounds (PCA-Gly) were designed and synthesized. The results related to the castor bean seeds (R. communis L.) indicated that all the target compounds (4a–4f) had phloem mobility. The capacity for phloem mobility shows that N-alkylated glycine containing small substituents can significantly improve PCA phloem mobility, such as 4c(i-C3H7-N) > 4a(CH3-N) ≈ 4b(C2H5-N) > 4d (t-C4H9-N) > PCA-Gly > 4e(C6H5-N) > 4f(CH2COOH-N), with an oil–water partition coefficient between 1.2~2.5. In particular, compounds 4a(CH3-N), 4b(C2H5-N), and 4c(i-C3H7-N) present better phloem mobility, with the average concentrations in phloem sap of 14.62 μΜ, 13.98 μΜ, and 17.63 μΜ in the first 5 h, which are 8 to 10 times higher than PCA-Gly (1.71 μΜ). The results reveal that the Kleier model and Carrier-mediated theory play a guiding role in the design of phloem-mobile pesticides. However, the single Kleier model or Carrier-mediated theory are not entirely accurate. Still, there is a synergism between Carrier-mediated theory and the Kleier model for promoting the phloem transport of exogenous compounds. Therefore, we suggest the introduction of endogenous plant compounds as a promoiety to improve the phloem mobility of pesticides through Carrier-mediated theory. It is necessary to consider the improvement of physicochemical properties according to the Kleier model, which can contribute to a scientific theory for developing phloem-mobile pesticides.  相似文献   

4.
Phthalic acid esters (PAEs) have a negative impact on living organisms in the environment, therefore, are among the group of Endocrine Disrupting Compounds (ECDs). Unfortunately, conventional methods used in municipal wastewater treatment plants (MWWTPs) are not designed to eliminate PAEs. For this reason, the development of cheap and simple but very effective techniques for the removal of such residues from wastewater is crucial. The main aim of this study was the evaluation of the removal of six selected PAEs: diethyl phthalate (DEP), di-n-octyl phthalate (DOP), di-n-butyl phthalate (DBP), benzyl butyl phthalate (BBP), bis(2-ethylhexyl) phthalate (DEHP) and dimethyl phthalate (DMP), in real MWWTPs supported by constructed wetlands (MWWTP–CW system). For the first time, the possibility of using three new plants for this purpose, Cyperus papyrus (papyrus), Lysimachia nemorum (yellow pimpernel) and Euonymus europaeus (European spindle), has been presented. For determining the target PAEs in wastewater samples, a method of SPE (Solid-Phase Extraction)–GC–MS(SIM) was developed and validated, and for plant materials, a method of UAE (Ultrasound-Assisted Extraction)–SPE–GC–MS(SIM) was proposed. The obtained data showed that the application of the MWWTP–CW system allows a significant increase in the removal of DEP, DBP, BBP and DEHP from the wastewater stream. Euonymus europaeus was the most effective among the tested plant species for the uptake of analytes (8938 ng × g−1 dry weight), thus, this plant was found to be optimal for supporting conventional MWWTPs.  相似文献   

5.
The removal of organic pollutants is a major challenge in wastewater treatment technologies. Coagulation by plant proteins is a promising technique for this purpose. The use of these proteins has been experimentally investigated and reported in the literature. However, the determination of the molecular interactions of these species is experimentally challenging and the computational approach offers a suitable alternative in gathering useful information for this system. The present study used a molecular dynamic simulation approach to predict the potentials of using Moringa oleifera (MO), Arachis hypogaea, Bertholletia excelsa, Brassica napus, and Helianthus annuus plant proteins for the coagulation of organic pollutants and the possible mechanisms of coagulation of these proteins. The results showed that the physicochemical and structural properties of the proteins are linked to their performance. Maximum coagulation of organic molecules to the proteins is between 50–100%. Among five proteins studied for coagulation, Brassica napus and Helianthus annuus performed better than the well-known MO protein. The amino acid residues interacting with the organic molecules play a significant role in the coagulation and this is peculiar with each plant protein. Hydrogen bond and π—interactions dominate throughout the protein–pollutants molecular interactions. The reusability of the proteins after coagulation derived from their structural quality analysis along with the complexes looks promising and most of them are better than that of the MO. The results showed that the seed proteins studied have good prediction potentials to be used for the coagulation of organic pollutants from the environment, as well as the insights into their molecular activities for bioremediation.  相似文献   

6.
Nitrate reductases (NRs) are molybdoenzymes that reduce nitrate (NO3) to nitrite (NO2) in both mammals and plants. In mammals, the salival microbes take part in the generation of the NO2 from NO3, which further produces nitric oxide (NO) either in acid-induced NO2 reduction or in the presence of nitrite reductases (NiRs). Here, we report a new approach of VCl3 (V3+ ion source) induced step-wise reduction of NO3 in a CoII-nitrato complex, [(12-TMC)CoII(NO3)]+ (2,{CoII–NO3}), to a CoIII–nitrosyl complex, [(12-TMC)CoIII(NO)]2+ (4,{CoNO}8), bearing an N-tetramethylated cyclam (TMC) ligand. The VCl3 inspired reduction of NO3 to NO is believed to occur in two consecutive oxygen atom transfer (OAT) reactions, i.e., OAT-1 = NO3 → NO2 (r1) and OAT-2 = NO2 → NO (r2). In these OAT reactions, VCl3 functions as an O-atom abstracting species, and the reaction of 2 with VCl3 produces a CoIII-nitrosyl ({CoNO}8) with VV-Oxo ({VV Created by potrace 1.16, written by Peter Selinger 2001-2019 O}3+) species, via a proposed CoII-nitrito (3, {CoII–NO2}) intermediate species. Further, in a separate experiment, we explored the reaction of isolated complex 3 with VCl3, which showed the generation of 4 with VV-Oxo, validating our proposed reaction sequences of OAT reactions. We ensured and characterized 3 using VCl3 as a limiting reagent, as the second-order rate constant of OAT-2 (k2/) is found to be ∼1420 times faster than that of the OAT-1 (k2) reaction. Binding constant (Kb) calculations also support our proposition of NO3 to NO transformation in two successive OAT reactions, as Kb(CoII–NO2) is higher than Kb(CoII–NO3), hence the reaction moves in the forward direction (OAT-1). However, Kb(CoII–NO2) is comparable to Kb{CoNO}8, and therefore sequenced the second OAT reaction (OAT-2). Mechanistic investigations of these reactions using 15N-labeled-15NO3 and 15NO2 revealed that the N-atom in the {CoNO}8 is derived from NO3 ligand. This work highlights the first-ever report of VCl3 induced step-wise NO3 reduction (NRs activity) followed by the OAT induced NO2 reduction and then the generation of Co-nitrosyl species {CoNO}8.

Single metal-induced reduction of NO3 → {NO2} → NO via oxygen atom transfer reaction.  相似文献   

7.
Shortcut nitrification is the first step of shortcut nitrogen removal from swine wastewater. Stably obtaining an effluent with a significant amount of nitrite is the premise for the subsequent shortcut denitrification. In this paper, the stability of nitrite accumulation was investigated using a 1.5-day hydraulic retention time in a 10-L (working volume) activated sludge sequencing batch reactor (SBR) with an 8-h cycle consisted of 4 h 38 min aerobic feeding, 1 h 22 min aerobic reaction, 30 min settling, 24 min withdrawal, and 1 h 6 min idle. The nitrite production stability was tested using four different ammonium loading rates, 0.075, 0.062, 0.053, and 0.039 g NH4-N/g (mixed liquid suspended solid, MLSS) day in a 2-month running period. The total inorganic nitrogen composition in the effluent was not affected when the ammonium load was between 0.053 and 0.075 g NH4-N/g MLSS · day (64% NO2-N, 16% NO3-N, and 20% NH4-N). Under 0.039 g NH4-N/g MLSS · day, more NO2-N was transformed to NO3-N with an effluent of 60% NO2-N, 20% NO3-N, and 20% NH4-N. The reducing load test was able to show the relationship between a declining free nitrous acid (FNA) concentration and the decreasing nitrite production, indicating that the inhibition of FNA on nitrite oxidizing bacteria depends on its levels and an ammonium loading rate around 0.035 g NH4-N/g MLSS · day is the lower threshold for producing a nitrite dominance effluent in the activated sludge SBR under the current settings.  相似文献   

8.
The electron beam technology for flue gas treatment (EBFGT) has been developed in Japan in the early 1980s. Later on, this process was investigated in pilot scale in the USA, Germany, Japan, Poland, Bulgaria and China. The new engineering and process solutions have been developed during the past two decades. Finally industrial plants have been constructed in Poland and China. The high efficiency of SOx and NOx removal was achieved (up to 95% for SOx and up to 70% for NOx) and by-product is a high quality fertilizer. Since the power of accelerators applied in industrial installation is over 1 MW and requested operational availability of the plant is equal to 8500 h in year, it is a new challenge for radiation processing applications.  相似文献   

9.
The direct and indirect bactericidal effects of dielectric barrier discharge (DBD) cold atmospheric-pressure microplasma in an air and plasma jet generated in an argon-oxygen gas mixture was investigated on Staphylococcus aureus and Cutibacterium acnes. An AC power supply was used to generate plasma at relatively low discharge voltages (0.9–2.4 kV) and frequency (27–30 kHz). Cultured bacteria were cultivated at a serial dilution of 10−5, then exposed to direct microplasma treatment and indirect treatment through plasma-activated water (PAW). The obtained results revealed that these methods of bacterial inactivation showed a 2 and 1 log reduction in the number of survived CFU/mL with direct treatment being the most effective means of treatment at just 3 min using air. UV–Vis spectroscopy confirmed that an increase in treatment time at 1.2% O2, 98.8% Ar caused a decrease in O2 concentration in the water as well as a decrease in absorbance of the peaks at 210 nm, which are attributed NO2 and NO3 concentration in the water, termed denitratification and denitritification in the treated water, respectively.  相似文献   

10.
To establish a novel approach for VOCs resource utilization, coupled o-xylene oxidation and hematite reduction was investigated in this study in a high-temperature gas-solid reactor in the temperature range 300–700 °C. As the o-xylene-containing inert gas (N2) stream traveled through the hematite particle bed, its reaction behavior was determined in programmed heating and constant temperature modes. Consequently, the effect of bed temperature, flow rate and o-xylene inlet concentration on both o-xylene removal performance and degree of hematite reduction was studied. The raw hematite and solid products were analyzed by TGA, XRF, XRD and SEM-EDS. The results showed that a temperature above 300 °C was required to completely eliminate o-xylene by hematite, and both o-xylene removal capacity and degree of hematite reduction at 5% breakthrough points enhanced on increasing the temperature and decreasing the flow rate. The increment in temperature from 300 °C to 700 °C led to a gradual reduction of Fe2O3 to Fe3O4, FeO and metallic iron. Thus, this study provides a novel, economic and promising technology for treating the VOC pollutants.  相似文献   

11.
Sludge water (SW) arising from the dewatering of anaerobic digested sludge causes high back loads of ammonium, leading to high stress (inhibition of the activity of microorganisms by an oversupply of nitrogen compounds (substrate inhibition)) for wastewater treatment plants (WWTP). On the other hand, ammonium is a valuable resource to substitute ammonia from the energy intensive Haber-Bosch process for fertilizer production. Within this work, it was investigated to what extent and under which conditions Carpathian clinoptilolite powder (CCP 20) can be used to remove ammonium from SW and to recover it. Two different SW, originating from municipal WWTPs were investigated (SW1: c0 = 967 mg/L NH4-N, municipal wastewater; SW2: c0 = 718–927 mg/L NH4-N, large industrial wastewater share). The highest loading was achieved at 307 K with 16.1 mg/g (SW1) and 15.3 mg/g (SW2) at 295 K. Kinetic studies with different specific dosages (0.05 gCLI/mgNH4-N), temperatures (283–307 K) and pre-loaded CCP 20 (0–11.4 mg/g) were conducted. At a higher temperature a higher load was achieved. Already after 30 min contact time, regardless of the sludge water, a high load up to 7.15 mg/g at 307 K was reached, achieving equilibrium after 120 min. Pre-loaded sorbent could be further loaded with ammonium when it was recontacted with the SW.  相似文献   

12.
Herein, we have used density functional theory (DFT) to investigate the adsorption behavior of gas molecules on Co/N3 co–doped graphene (Co/N3–gra). We have investigated the geometric stability, electric properties, and magnetic properties comprehensively upon the interaction between Co/N3–gra and gas molecules. The binding energy of Co is −5.13 eV, which is big enough for application in gas adsorption. For the adsorption of C2H4, CO, NO2, and SO2 on Co/N–gra, the molecules may act as donors or acceptors of electrons, which can lead to charge transfer (range from 0.38 to 0.7 e) and eventually change the conductivity of Co/N–gra. The CO adsorbed Co/N3–gra complex exhibits a semiconductor property and the NO2/SO2 adsorption can regulate the magnetic properties of Co/N3–gra. Moreover, the Co/N3–gra system can be applied as a gas sensor of CO and SO2 with high stability. Thus, we assume that our results can pave the way for the further study of gas sensor and spintronic devices.  相似文献   

13.
The respective roles of short and long-life oxidant species in the degradation of model organic pollutants in water have been investigated in a gas–liquid gliding arc plasma reactor. Three different model pollutants were treated in two configurations: direct discharge mode and spatial post discharge mode. In each case the pollutants were classified according to their ease of removal, from easier to more difficult to remove. The results were as follows: phenol >> 1-heptanol >> pCBA. The removal mechanisms also are different depending on the characteristics of the pollutant treated. Phenol (100 % of phenol was removed for energy density = 1.20 × 105 J/L) was supposed to react strongly with NO2° radicals produced by the dissociation of N2O4 in liquid phase. The degradation of 1-heptanol would proceed by desorption of the liquid phase to the gas phase, where oxidation occurs due to the plasma active short-lived species. In the case of pCBA, oxidation occurs in the liquid solution, but the degradation is low because of its low reactivity with species such as ozone and °NO2 and insufficient production of OH° radicals in the solution.  相似文献   

14.
We investigated how different doses of microwave irradiation (MR) affect seed germination in Sorghum, including the level of remediation against textile and surgical wastewater (WW) by modulating biochemical and morpho-physiological mechanisms under glutamic acid (GA) application. The experiment was conducted to determine the impact of foliar-applied GA on Sorghum under wastewater conditions. Plants were treated with or without microwave irradiation (30 s, 2.45 GHz), GA (5 and 10 mM), and wastewater (0, 25, 50, and 100). Growth and photosynthetic pigments were significantly decreased in plants only treated with various concentrations of WW. GA significantly improved the plant growth characteristics both in MR-treated and -untreated plants compared with respective controls. HMs stress increased electrolyte leakage (EL), hydrogen peroxide (H2O2), and malondialdehyde (MDA) content; however, the GA chelation significantly improved the antioxidant enzymes activities such as ascorbate oxidase (APX), superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT) both in MR-treated and -untreated plants under WW stress compared with respective controls. The results suggested that the MR-treated plants accumulate higher levels of HMs under GA addition in comparison to the WW-only-treated and MR-untreated plants. The maximum increase in Cd accumulation was observed in the range of 14–629% in the roots, 15–2964% in the stems, and 26–4020% in the leaves; the accumulation of Cu was 18–2757% in the roots, 15–4506% in the stems, and 23–4605% in the leaves; and the accumulation of Pb was 13–4122% in the roots, 21–3588% in the stems, and 21–4990% in the leaves under 10 mM GA and MR-treated plants. These findings confirmed that MR-treated sorghum plants had a higher capacity for HMs uptake under GA and could be used as a potential candidate for wastewater treatment.  相似文献   

15.
Currently, the negative effects of unified and intensive agriculture are of growing concern. To mitigate them, the possibilities of using local but nowadays underused crop for food production should be more thoroughly investigated and promoted. The soybean is the major crop cultivated for vegetable oil production in Zambia, while the oil production from local oil-bearing plants is neglected. The chemical composition of oils and cakes of a three traditional oil plant used by descendants of the Lozi people for cooking were investigated. Parinari curatellifolia and Schinziophyton rautanenii oils were chiefly composed of α-eleostearic (28.58–55.96%), linoleic (9.78–40.18%), and oleic acid (15.26–24.07%), whereas Ochna serrulata contained mainly palmitic (35.62–37.31%), oleic (37.31–46.80%), and linoleic acid (10.61–18.66%); the oil yield was high (39–71%). S. rautanenii and O. serrulata oils were rich in γ-tocopherol (3236.18 μg/g, 361.11 μg/g, respectively). The O. serrulata oil also had a very distinctive aroma predominantly composed of p-cymene (52.26%), m-xylene (9.63%), γ-terpinene (9.07%), o-xylene (7.97), and limonene (7.23%). The cakes remaining after oil extraction are a good source of essential minerals, being rich in N, P, S, K, Ca, and Mg. These plants have the potential to be introduced for use in the food, technical, or pharmaceutical industries.  相似文献   

16.
Structural factors have been identified that determine the gas-phase acidity of ortho-substituted benzenesulfonic acid, 2-XC6H4–SO3H, (X = –SO3H, –COOH, –NO2, –SO2F, –C≡N, –NH2, –CH3, –OCH3, –N(CH3)2, –OH). The DFT/B3LYP/cc-pVTZ method was used to perform conformational analysis and study the structural features of the molecular and deprotonated forms of these compounds. It has been shown that many of the conformers may contain anintramolecular hydrogen bond (IHB) between the sulfonic group and the substituent, and the sulfonic group can be an IHB donor or an acceptor. The Gibbs energies of gas-phase deprotonation ΔrG0298 (kJ mol–1) were calculated for all compounds. It has been set that in ortho-substituted benzenesulfonic acids, the formation of various types of IHB is possible, having a significant effect on the ΔrG0298 values of gas-phase deprotonation. If the –SO3H group is the IHB donor, then an ion without an IHB is formed upon deprotonation, and the deprotonation energy increases. If this group is an IHB acceptor, then a significant decrease in ΔrG0298 of gas-phase deprotonation is observed due to an increase in IHB strength and the A anion additional stabilization. A proton donor ability comparative characteristic of the –SO3H group in the studied ortho-substituted benzenesulfonic acids is given, and the ΔrG0298 energies are compared with the corresponding values of ortho-substituted benzoic acids.  相似文献   

17.
It is intriguing how the Hammett equation enables control of chemical reactivity throughout chemical space by separating the effect of substituents from chemical process variables, such as reaction mechanism, solvent, or temperature. We generalize Hammett''s original approach to predict potential energies of activation in non aromatic molecular scaffolds with multiple substituents. We use global regression to optimize Hammett parameters ρ and σ in two experimental datasets (rate constants for benzylbromides reacting with thiols and ammonium salt decomposition), as well as in a synthetic dataset consisting of computational activation energies of ∼2400 SN2 reactions, with various nucleophiles and leaving groups (–H, –F, –Cl, –Br) and functional groups (–H, –NO2, –CN, –NH3, –CH3). Individual substituents contribute additively to molecular σ with a unique regression term, which quantifies the inductive effect. The position dependence of substituents can be modeled by a distance decaying factor for SN2. Use of the Hammett equation as a base-line model for Δ-machine learning models of the activation energy in chemical space results in substantially improved learning curves reaching low prediction errors for small training sets.

We generalize Hammett''s original approach to predict potential energies of activation in non aromatic molecular scaffolds with multiple substituents.  相似文献   

18.
Hydrogen gas is emerging as an attractive fuel with high energy density for the direction of energy resources in the future. Designing integrated devices based on a photoelectrochemical (PEC) cell and a microbial fuel cell (MFC) represents a promising strategy to produce hydrogen fuel at a low price. In this work, we demonstrate a new solar-microbial (PEC–MFC) hybrid device based on the oxygen-deficient Nb2O5 nanoporous (Nb2O5–x NPs) anodes for sustainable hydrogen generation without external bias for the first time. Owing to the improved conductivity and porous structure, the as-prepared Nb2O5–x NPs film yields a remarkable photocurrent density of 0.9 mA cm–2 at 0.6 V (vs. SCE) in 1 M KOH aqueous solution under light irradiation, and can achieve a maximum power density of 1196 mW m–2 when used as an anode in a MFC device. More importantly, a solar-microbial hybrid system by combining a PEC cell with a MFC is designed, in which the Nb2O5–x NPs electrodes function as both anodes. The as-fabricated PEC–MFC hybrid device can simultaneously realize electricity and hydrogen using organic matter and solar light at zero external bias. This novel design and attempt might provide guidance for other materials to convert and store energy.  相似文献   

19.
This paper studies the degradation of methiocarb, a highly hazardous pesticide found in waters and wastewaters, through an electro-Fenton process, using a boron-doped diamond anode and a carbon felt cathode; and evaluates its potential to reduce toxicity towards the model organism Daphnia magna. The influence of applied current density and type and concentration of added iron source, Fe2(SO4)3·5H2O or FeCl3·6H2O, is assessed in the degradation experiments of methiocarb aqueous solutions. The experimental results show that electro-Fenton can be successfully used to degrade methiocarb and to reduce its high toxicity towards D. magna. Total methiocarb removal is achieved at the applied electric charge of 90 C, and a 450× reduction in the acute toxicity towards D. magna, on average, from approximately 900 toxic units to 2 toxic units, is observed at the end of the experiments. No significant differences are found between the two iron sources studied. At the lowest applied anodic current density, 12.5 A m−2, an increase in iron concentration led to lower methiocarb removal rates, but the opposite is found at the highest applied current densities. The highest organic carbon removal is obtained at the lowest applied current density and added iron concentration.  相似文献   

20.
Metronidazole (MET) is a commonly detected contaminant in the environment. The compound is classified as poorly biodegradable and highly soluble in water. Heterogeneous photocatalysis is the most promoted water purification method due to the possibility of using sunlight and small amounts of a catalyst needed for the process. The aim of this study was to select conditions for photocatalytic removal of metronidazole from aquatic samples. The effect of catalyst type, mass, and irradiance intensity on the efficiency of metronidazole removal was determined. For this purpose, TiO2, ZnO, ZrO2, WO3, PbS, and their mixtures in a mass ratio of 1:1 were used. In this study, the transformation products formed were identified, and the mineralization degree of compound was determined. The efficiency of metronidazole removal depending on the type of catalyst was in the range of 50–95%. The highest MET conversion (95%) combined with a high degree of mineralization (70.3%) was obtained by using a mixture of 12.5 g TiO2–P25 + PbS (1:1; v/v) and running the process for 60 min at an irradiance of 1000 W m−2. Four MET degradation products were identified by untargeted analysis, formed by the rearrangement of the metronidazole and the C-C bond breaking.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号