首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The thermodynamic metal ligand stability constants of rare earths, La3+, Pr3+, Nd3+, Sm3+, Bu3+, Gd3+ and Tb3+, with N-p-chlorophenyl-m-substituted benzohydroxamic acids in dioxan-water (60–70%) media at 25° C, have been determined by the potentiometric method. The effect of basicity of the ligand, central metal ion and the order of stability constants are discussed. The order of stability constants of rare earths with the hydroxamic acids is La<Pr<Nd<Sm<Eu<Gd>Tb.  相似文献   

2.
Multinuclear magnetic resonance spectroscopic studies of the trivalent lanthanide complexes with isothiocyanate have been completed for the praseodymium(III) and neodymium(III) ions. In water–acetone–Freon mixtures, at temperatures low enough to slow ligand exchange, usually –85 to –125°C for isothiocyanate, separate carbon-13 and nitrogen-15 NMR signals can be observed for free anion and NCS- in each metal–ion complex. For both metal ions, 15N NMR signals are observed for four complexes, displaced about +1500 ppm downfield from free NCS- for Pr3+ and about +2000 ppm for Nd3+. In the 13C NMR spectra, only three peaks are observed for the complexes of both metal anions, with signal overlap obscuring the resonance for the fourth complex. However, the metal ion coordination numbers, obtained by integration of the resonance signals, are comparable in the 15N and 13C spectra, approaching a maximum value of about 3. These spectral data indicate the formation of Ln(NCS)2+ through Ln(NCS) 4 1- occurs for both lanthanides in these solvent systems, a result also observed previously for Ce3+, Sm3+, and Eu3+ in our laboratory. Attempts to study these complexes in water–methanol were unsuccessful, due to the inability to achieve low enough temperatures to slow ligand exchange sufficiently. Results for NCS- and Cl- competitive-binding studies by 35Cl NMR for both metal ions will also be described.  相似文献   

3.
Desferrioxamine (DFO) is the current “gold standard” chelator for 89Zr4+, which is used to label monoclonal antibodies for applications in immunopositron emission tomography. Recently, controversial data have been reported regarding the speciation and the stability of the complexes formed by DFO with Zr4+ in solution. To shed some light on this point, we studied the coordination properties in solution ofa chromophoric DFO derivative bearing a substituted pyrimidine residue (DFOPm) toward several metal ions (Zr4+, Cu2+, Zn2+, Mg2+, Ca2+, Na+, K+). Potentiometric titrations showed that DFOPm and pristine DFO form complexes with very similar stoichiometry and stability. DFOPm, which can consequently be taken as a model system for DFO, provides a photochemical response to metal coordination that can be used to further define the complexes formed. In the critical case of Zr4+, spectrophotometric measurements allowed the verification of the formation of 1:1 and 2:3 complexes that, together with 2:2 complexes form the coordination model that was obtained through the use of our potentiometric measurements. Additionally, mass spectrometry measurements verified the formation of 1:1 and 2:3 complexes and showed that 1:2 species can be easily generated through the fragmentation of the 2:3 species. In conclusion, the results obtained with DFOPm validate the complexation model of Zr4+/DFO composed of 1:1, 2:2, and 2:3 metal-to-ligand complexes. Convergences and conflicts with other works are addressed.  相似文献   

4.
Seven new neutral mononuclear metal complexes of VO2+, Mn2+, Fe3+, Co2+, Ni2+, Zn2+ and Cd2+ with the quinolone antibacterial agent oxolinic acid (=Hoxo) have been prepared and characterized with physicochemical and spectroscopic techniques. In all the complexes, oxolinic acid acts as a bidentate deprotonated ligand bound to the metal through the pyridone oxygen and one carboxylate oxygen. The metals in all the complexes are six-coordinate with slightly distorted octahedral geometry. The lowest energy model structures of the complexes Fe(oxo)3, VO(oxo)2(H2O) and Mn(oxo)2(H2O)2 have been determined with molecular modeling calculations. The ability of all the complexes to bind to calf-thymus DNA has been investigated with diverse spectroscopic techniques.  相似文献   

5.
A new bipyridyl derivative 1 bearing rhodamine B as visible fluorophore was designed, synthesized and characterized as a fluorescent and colorimetric sensor for metal ions. Interaction with Cu2+, Zn2+, Cd2+, Hg+, and Hg2+ ions was followed by UV/Vis and emission spectroscopy. Upon addition of these metal ions, different colorimetric and fluorescent responses were observed. “Off-on-off” (Cu2+, Zn2+, and Hg2+) and “off-on” (Hg+ and Cd2+) systems were obtained. Probe 1 was explored to mimic XOR and OR logic operations for the simultaneous detection of Hg+–Cu2+ and Hg+–Zn2+ pairs, respectively. DFT calculations were also performed to gain insight into the lowest-energy gas-phase conformation of free receptor 1 as well as the atomistic details of the coordination modes of the various metal ions.  相似文献   

6.
This article studies the supramolecular assembly behavior of a Zn-trisporphyrin conjugate containing a triphenylamine core (1) with bridging N-donor ligands using the UV-vis spectrophotometric titration method at micromolar concentrations. Our results show that pyridine, a non-bridging ligand, formed a 3:1 open complex with 1. The corresponding binding constant was estimated to be (2.7 ± 0.15) × 1014 M−3. In contrast, bridging ligands, 4,4-bipyridine (BIPY) and 1,3-di(4-pyridyl)propane (DPYP), formed stable 3:2 double-decker complexes with 1 in solution, which collapsed to yield a 3:1 open complex when excess BIPY or DPYP was added. The binding constants for forming BIPY and DPYP double-decker complexes were estimated to be (9.26 ± 0.07) × 1027 M−4 and (3.62 ± 0.16) × 1027 M−4, respectively. The UV-vis titration profiles supported the conclusion that the degradation of the 3:2 double-decker 1∙BIPY complex is less favorable compared to that of 1∙DPYP. Consequently, the formation of the 3:1 1∙DPYP open complex proceeded more readily than that of 1∙BIPY.  相似文献   

7.
The geometry of metal ions (La3+, Ce3+, UO, and Th4+) complexes with 5‐azorhodanine derivatives was optimized at the level of molecular mechanics. Two stoichiometric ratios of metal to ligand (i.e., 1:1 and 1:2) were investigated. Tetracoordinate and hexacoordinate of each stoichiometric ratio have been studied. Effect of substitution in the ligand on the geometry of the complexes was discussed in the light of electron donating–accepting properties of these substituents. The influence of the nuclear effective charge of the central metal ions on the metal–ligand (M–L) bonding was discussed and the effect of the number of ligands on the M–L bond length was also discussed and correlated to the experimental results. The total energies of the different metal complexes were computed using the extended Huckel method. The effect of substituents in ligand, metal type, and stoichiometry of the complexes on the complex total energies were discussed. Stability constant of (La3+, Ce3+, UO, and Th4+) metal ions with 5‐azorhodanine derivaties have been determined potentiometrically in 0.1 M KCl and 50% (v/v) ethanol–water mixture. The order of the stability constants of the formed complexes was found to be La3+ < Ce3+ < UO < Th4+. The influence of substituents on the stability of the complexes was examined on the basis of electron‐repelling property of the substituent. The effect of temperature on the stability of the complexes formed was studied and the corresponding thermodynamic parameters (ΔG, ΔH, and ΔS) were derived and discussed. The stoichiometries of these complexes were determined conductometrically and indicated the formation of 1:1 and 1:2 (metal:ligand) complexes. © 2003 Wiley Periodicals, Inc. Int J Quantum Chem, 2003  相似文献   

8.
A 1,4,7,10-tetraazacyclododecane (cyclen) variant bearing two thiosemicarbazone pendant groups has been prepared. The ligand forms complexes with Mn2+, Co2+ and Zn2+. X-ray crystallography of the Mn2+, Co2+ and Zn2+ complexes showed that the ligand provides a six-coordinate environment for the metal ions. The Mn2+ and Zn2+ complexes exist in the solid state as racemic mixtures of the Δ(δ,δ,δ,δ)/Λ(λ,λ,λ,λ) and Δ(λ,λ,λ,λ)/Λ(δ,δ,δ,δ) diastereomers, and the Co2+ complex exists as the Δ(δ,δ,δ,δ)/Λ(λ,λ,λ,λ) and Δ(λ,λ,λ,δ)/Λ(δ,δ,δ,λ) diastereomers. Density functional theory calculations indicated that the relative energies of the diastereomers are within 10 kJ mol−1. Magnetic susceptibility of the complexes indicated that both the Mn2+ and Co2+ ions are high spin. The ligand was radiolabelled with gallium-68, in the interest of developing new positron emission tomography imaging agents, which produced a single species in high radiochemical purity (>95%) at 90 °C for 10 min.  相似文献   

9.

Abstract  

Five novel lanthanide (Eu3+, Tb3+, Sm3+, Dy3+, and Gd3+) complexes with 5-nitro-1,10-phenanthroline (phenNO2) have been synthesized and characterized by elemental analysis, IR, UV, and luminescence spectra. The triplet state energy of phenNO2 was determined to be 20,048 cm−1 via the phosphorescence spectra of phenNO2 and its gadolinium complex. The photophysical properties of these complexes indicated that the triplet state energy of the ligand is suitable for the sensitization of the luminescence of Eu3+ and Sm3+, especially the former.  相似文献   

10.
Intermolecular bonding attraction at π-bonded centers is often described as “electrostatically driven” and given quasi-classical rationalization in terms of a “pi hole” depletion region in the electrostatic potential. However, we demonstrate here that such bonding attraction also occurs between closed-shell ions of like charge, thereby yielding locally stable complexes that sharply violate classical electrostatic expectations. Standard DFT and MP2 computational methods are employed to investigate complexation of simple pi-bonded diatomic anions (BO, CN) with simple atomic anions (H, F) or with one another. Such “anti-electrostatic” anion–anion attractions are shown to lead to robust metastable binding wells (ranging up to 20–30 kcal/mol at DFT level, or still deeper at dynamically correlated MP2 level) that are shielded by broad predissociation barriers (ranging up to 1.5 Å width) from long-range ionic dissociation. Like-charge attraction at pi-centers thereby provides additional evidence for the dominance of 3-center/4-electron (3c/4e) nD-π*AX interactions that are fully analogous to the nD-σ*AH interactions of H-bonding. Using standard keyword options of natural bond orbital (NBO) analysis, we demonstrate that both n-σ* (sigma hole) and n-π* (pi hole) interactions represent simple variants of the essential resonance-type donor-acceptor (Bürgi–Dunitz-type) attraction that apparently underlies all intermolecular association phenomena of chemical interest. We further demonstrate that “deletion” of such π*-based donor-acceptor interaction obliterates the characteristic Bürgi–Dunitz signatures of pi-hole interactions, thereby establishing the unique cause/effect relationship to short-range covalency (“charge transfer”) rather than envisioned Coulombic properties of unperturbed monomers.  相似文献   

11.
The lanthanide complexes derived from (3,5,13,15-tetramethyl 2,6,12,16,21-22-hexaazatricyclo[15.3.I1-17I7-11]cosa-1(21),2,5,7,9,11(22),12,15,17,19-decane) were synthesized. The complexes were found to have general composition [Ln(L)X2·H2O]X, where Ln = La3+, Ce3+, Nd3+, Sm3+ and Eu3+ and X = NO3? and Cl?. The ligand was characterized by elemental analyses, IR, Mass, and 1H NMR spectral studies. All the complexes were characterized by elemental analyses, molar conductance measurements, magnetic susceptibility measurements, IR, Mass, electronic spectral techniques and thermal studies. The ligand acts as a hexadentate and coordinates through four nitrogen atoms of azomethine groups and two nitrogen of pyridine ring. The lanthanum complexes are diamagnetic while the other Ln(III) complexes are paramagnetic. The spectral parameters i.e. nephelauxetic ratio (β), covalency factor (b1/2), Sinha parameter (δ%) and covalency angular overlap parameter (η) have been calculated from absorption spectra of Nd(III) and Sm(III) complexes. These parameters suggest the metal–ligand covalent bonding. In the present study, the complexes were found to have coordination number nine.  相似文献   

12.
The structure and gas-phase metal affinities (M = Cu2+, Ni2+, and Zn2+) of formohydroxamic acid derivatives R–C(O)NHOH (R = H, NH2, CH3, CF3 and Phenyl) were studied using the B3LYP/6-311+G(d,p) method of DFT theory. In order to evaluate the conformational behavior of these systems in water, we carried out CPCM-SCRF optimization calculations at the B3LYP/6-311+G(d,p) levels of theory. The obtained optimized geometries and interaction affinities of the gas and solution phase were compared. The following order of stability was found for ionic complexes of the transition metals: Cu2+ > Ni(t)2+ > Zn2+. The same stability order would be expected according to the Irving–Williams order of stability constants. The high-spin complexes of the Ni2+ were more stable than the low-spin complexes. The solvent effect reduced the observed relative stability of individual metallic complexes of substituted hydroxamic acids.  相似文献   

13.
In order to create near-infrared (NIR) luminescent lanthanide complexes suitable for DNA-interaction, novel lanthanide dppz complexes with general formula [Ln(NO3)3(dppz)2] (Ln = Nd3+, Er3+ and Yb3+; dppz = dipyrido[3,2-a:2′,3′-c]phenazine) were synthesized, characterized and their luminescence properties were investigated. In addition, analogous compounds with other lanthanide ions (Ln = Ce3+, Pr3+, Sm3+, Eu3+, Tb3+, Dy3+, Ho3+, Tm3+, Lu3+) were prepared. All complexes were characterized by IR spectroscopy and elemental analysis. Single-crystal X-ray diffraction analysis of the complexes (Ln = La3+, Ce3+, Pr3+, Nd3+, Eu3+, Er3+, Yb3+, Lu3+) showed that the lanthanide’s first coordination sphere can be described as a bicapped dodecahedron, made up of two bidentate dppz ligands and three bidentate-coordinating nitrate anions. Efficient energy transfer was observed from the dppz ligand to the lanthanide ion (Nd3+, Er3+ and Yb3+), while relatively high luminescence lifetimes were detected for these complexes. In their excitation spectra, the maximum of the strong broad band is located at around 385 nm and this wavelength was further used for excitation of the chosen complexes. In their emission spectra, the following characteristic NIR emission peaks were observed: for a) Nd3+: 4F3/24I9/2 (870.8 nm), 4F3/24I11/2 (1052.7 nm) and 4F3/24I13/2 (1334.5 nm); b) Er3+: 4I13/24I15/2 (1529.0 nm) c) Yb3+: 2F5/22F7/2 (977.6 nm). While its low triplet energy level is ideally suited for efficient sensitization of Nd3+ and Er3+, the dppz ligand is considered not favorable as a sensitizer for most of the visible emitting lanthanide ions, due to its low-lying triplet level, which is too low for the accepting levels of most visible emitting lanthanides. Furthermore, the DNA intercalation ability of the [Nd(NO3)3(dppz)2] complex with calf thymus DNA (CT-DNA) was confirmed using fluorescence spectroscopy.  相似文献   

14.
A new dioxime ligand, N,N-bis(2-{[(2,2-dimethyl-1,3-dioxolan-4-yl)methyl]amino} ethyl)N′,N′-dihydroxyethanediimidamide (H2L), and its mononuclear complexes with Co2+, Ni2+, Cu2+, Zn2+ and Cd2+ are synthesized. H2L forms transition metal complexes [Co(LH)2(H2O)2] and [M(LH)2] (M = Ni2+, Cu2+) with a metal : ligand ratio of 1 : 2. Complexes [M(H2L)(Cl)2] (Zn2+, Cd2+) have a metal : ligand ratio of 1 : 1. The mononuclear Co2+, Ni2+, and Cu2+ complexes indicate that the metal ions coordinate ligand through its two N atoms, as the most of dioximes. In the Co2+ complex, two water molecules and in the Zn2+ and Cd2+ complexes two chloride ions are also coordinated to the metal ion. The structures of these compounds are identified by elemental analyses, IR, 1H and 13C NMR, electronic spectra, magnetic susceptibility measurements, conductivity, and thermogravimetric analysis.__________From Koordinatsionnaya Khimiya, Vol. 31, No. 7, 2005, pp. 540–544.Original English Text Copyright © 2005 by Canpolat, Kaya.The text was submitted by the authors in English.  相似文献   

15.
We report here porphodilactol derivatives and their corresponding metal complexes. These systems show promise as “all-in-one” phototheranostics and are predicated on a design strategy that involves controlling the relationship between intersystem crossing (ISC) and photothermal conversion efficiency following photoexcitation. The requisite balance was achieved by tuning the aromaticity of these porphyrinoid derivatives and forming complexes with one of two lanthanide cations, namely Gd3+ and Lu3+. The net result led to a metalloporphodilactol system, Gd-trans-2, with seemingly optimal ISC efficiency, photothermal conversion efficiency and fluorescence properties, as well as good chemical stability. Encapsulation of Gd-trans-2 within mesoporous silica nanoparticles (MSN) allowed its evaluation for tumour diagnosis and therapy. It was found to be effective as an “all-in-one” phototheranostic that allowed for NIR fluorescence/photoacoustic dual-modal imaging while providing an excellent combined PTT/PDT therapeutic efficacy in vitro and in vivo in 4T1-tumour-bearing mice.

We report here porphodilactol derivatives and their corresponding metal complexes as “all-in-one” phototheranostics by controlling the relationship between intersystem crossing (ISC) and photothermal conversion efficiency following photoexcitation.  相似文献   

16.
The development of novel selective probes with high sensitivity for the detection of Al3+ is widely considered an important research goal due to the importance of such probes in medicine, living systems and the environment. Here, we describe a new fluorescent probe, N′-(4-diethylamino-2-hydroxybenzylidene)-2-hydroxybenzohydrazide (1), for Al3+. Probe 1 was evaluated in a solution of acetonitrile/water (1:1 v/v). Compared with previously reported probes for Al3+, probe 1 can be synthesized easily and in high yield. A Job plot confirmed that probe 1 is able to complex Al3+ in a 1:1 ratio, and the binding constant was determined to be 4.25×108m−1. Moreover, the detection limit was as low as 6.7×10−9m, suggesting that probe 1 has a high sensitivity. Common coexistent metal ions, such as K+, Co2+, Ca2+, Ba2+, Ni2+, Pb2+, Hg2+, Ce2+, Zn2+, Cd2+, Fe3+, showed little or no interference in the detection of Al3+ in solution, demonstrating the high selectivity of the probe. Finally, the ability of probe 1 to act as a fluorescent probe for Al3+ in living systems was evaluated in Gram-negative bacteria, Escherichia coli, and confocal laser scanning microscopy confirmed its utility. The results of this study suggest that 1 has appropriate properties to be developed for application as a fluorescent probe of Al3+ for use in biological studies.  相似文献   

17.
Abstract

Adducts of theobromine (tbH) with 3d metal perchlorates (Mn+ = Cr3-. Mn2+, Fe2+, Fe3+, Co2+, Ni2+, Cu2+, Zn2- I here prepared by refluxing mixtures of the Iigand and a metal salt in ethyl acetate-triethyl orthoformate. The new complexes invariably involve 2: 1 molar ratios of tbH to metal ion and are apparently monomeric with terminal tbH ligands binding riaa ring nitrogen (N9 or Nl). The Mn2+, Cu2+ and Zn2- complexes are distorted tetrahedral, involving tuo tbH and two unidentate perchlorato ligands in the first coordination sphere of the metal ion. The remaining metal(II) complexes (Fe, Co, Ni) were obtained as monohydrates. These compounds are pentacoordinated of the [M(tbH)2(OClO3)2(OH2)] type, containing one aqua ligand in addition to the tbH and perchlorato ligands. The Cr3+ and Fe3+ complexes are low-symmetry hexacoordinated, with two tbH ligands. two unidentate and one bidentate chelating perchlorate Iigands.  相似文献   

18.
首次合成了五种新型希土(Eu3+, Tb3+, Gd3+, Sm3+, Dy3+)配合物。配体为带有喹啉环的4-羟基-7-三氟甲基-3-喹啉基甲酸乙酯。并用元素分析、红外光谱和热分析方法确定了配合物的组成。通过测定钆配合物的低温磷光光谱表明4-羟基-7-三氟甲基-3-喹啉基甲酸乙酯的三重态能级为22000 cm-1。配合物的光物理性质表明配体的三重态能级适于希土Eu3+, Sm3+, Dy3+和Tb3+,特别是Tb3+的发光。  相似文献   

19.
Currently, catalysts with oxidative activity are required to create valuable chemical, agrochemical, and pharmaceutical products. The catechol oxidase activity is a model reaction that can reveal new oxidative catalysts. The use of complexes as catalysts using iron (III) and structurally simple ligands such as pyrazine (pz), quinoxaline (qx), and phenazine (fz) has not been fully explored. To characterize the composition of the solution and identify the abundant species which were used to catalyze the catechol oxidation, the distribution diagrams of these species were obtained by an equilibrium study using a modified Job method in the HypSpec software. This allows to obtain also the UV-vis spectra calculated and the formation constants for the mononuclear and binuclear complexes with Fe3+ including: [Fe(pz)]3+, [Fe2(pz)]6+, [Fe(qx)]3+, [Fe2(qx)]6+, [Fe(fz)]3+, and [Fe2(fz)]6+. The formation constants obtained were log β110 = 3.2 ± 0.1, log β210 = 6.9 ± 0.1, log β110 = 4.4 ± 0.1, log β210 = 8.3 ± 0.1, log β110 = 6.4 ± 0.2, and log β210 = 9.9 ± 0.2, respectively. The determination of the catechol oxidase activity for these complexes did not follow a traditional Michaelis–Menten behavior.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号