首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Computational grids are a promising resource for modeling complex biochemical processes such as protein folding, penetration of gases or water into proteins, or protein structural rearrangements coupled to ligand binding. We have enabled the molecular dynamics program CHARMM to run on the Open Science Grid. The implementation is general, flexible, easily modifiable for use with other molecular dynamics programs and other grids and automated in terms of job submission, monitoring, and resubmission. The usefulness of grid computing was demonstrated through the study of hydration of the Glu-66 side chain in the interior of protein staphylococcal nuclease. Multiple simulations started with and without two internal water molecules shown crystallographically to be associated with the side chain of Glu-66 yielded two distinct populations of rotameric states of Glu-66 that differed by as much as 20%. This illustrates how internal water molecules can bias protein conformations. Furthermore, there appeared to be a temporal correlation between dehydration of the side chain and conformational transitions of Glu-66. This example demonstrated how difficult it is to get convergence even in the relatively simple case of a side chain oscillating between two conformations. With grid computing, we also benchmarked the self-guided Langevin dynamics method against the Langevin dynamics method traditionally used for temperature control in molecular dynamics simulations and showed that the two methods yield comparable results.  相似文献   

2.
3.
Approaching protein structural dynamics and protein–protein interactions in the cellular environment is a fundamental challenge. Owing to its absolute sensitivity and to its selectivity to paramagnetic species, site‐directed spin labeling (SDSL) combined with electron paramagnetic resonance (EPR) has the potential to evolve into an efficient method to follow conformational changes in proteins directly inside cells. Until now, the use of nitroxide‐based spin labels for in‐cell studies has represented a major hurdle because of their short persistence in the cellular context. The design and synthesis of the first maleimido‐proxyl‐based spin label (M‐TETPO) resistant towards reduction and being efficient to probe protein dynamics by continuous wave and pulsed EPR is presented. In particular, the extended lifetime of M‐TETPO enabled the study of structural features of a chaperone in the absence and presence of its binding partner at endogenous concentration directly inside cells.  相似文献   

4.
Chemical cross-linking provides an effective avenue to reduce the conformational entropy of polypeptide chains and hence has become a popular method to induce or force structural formation in peptides and proteins.Recently,other types of molecular constraints,especially photoresponsive linkers and functional groups,have also found increased use in a wide variety of applications.Herein,we provide a concise review of using various forms of molecular strategies to constrain proteins,thereby stabilizing their native states,gaining insight into their folding mechanisms,and/or providing a handle to trigger a conformational process of interest with light.The applications discussed here cover a wide range of topics,ranging from delineating the details of the protein folding energy landscape to controlling protein assembly and function.  相似文献   

5.
Spin‐label electron spin resonance (ESR) has emerged as a powerful tool to characterize protein dynamics. One recent advance is the development of ESR for resolving dynamical components that occur or coexist during a biological process. It has been applied to study the complex structural and dynamical aspects of membranes and proteins, such as conformational changes in protein during translocation from cytosol to membrane, conformational exchange between equilibria in response to protein‐protein and protein‐ligand interactions in either soluble or membrane environments, protein oligomerization, and temperature‐ or hydration‐dependent protein dynamics. As these topics are challenging but urgent for understanding the function of a protein on the molecular level, the newly developed ESR methods to capture individual dynamical components, even in low‐populated states, have become a great complement to other existing biophysical tools.  相似文献   

6.
The molecular chaperone Hsp90 undergoes an ATP‐driven cycle of conformational changes in which large structural rearrangements precede ATP hydrolysis. Well‐established small‐molecule inhibitors of Hsp90 compete with ATP‐binding. We wondered whether compounds exist that can accelerate the conformational cycle. In a FRET‐based screen reporting on conformational rearrangements in Hsp90 we identified compounds. We elucidated their mode of action and showed that they can overcome the intrinsic inhibition in Hsp90 which prevents these rearrangements. The mode of action is similar to that of the co‐chaperone Aha1 which accelerates the Hsp90 ATPase. However, while the two identified compounds influence conformational changes, they target different aspects of the structural transitions. Also, the binding site determined by NMR spectroscopy is distinct. This study demonstrates that small molecules are capable of triggering specific rate‐limiting transitions in Hsp90 by mechanisms similar to those in protein cofactors.  相似文献   

7.
Conformational changes in proteins profoundly influence their functional profiles. With site-directed spin labeling (SDSL)?Celectron paramagnetic resonance (EPR) spectroscopy, we investigated the mobility features of individual residue sites in the carbohydrate recognition domain (CRD) of LSECtin, a type II integral membrane protein. The mobility of six different residue sites scatting around the Ca2+-1-binding site were investigated by comparing their EPR spectra rotational correlation time ?? c in order to obtain the information of conformational changes of relevant region. The results showed that the overall mobility of LSECtin-CRD increased after addition of Ca2+ and N-acetylglucosamine, but different sites in the CRD exhibited different mobility features, suggesting that these sites may have different functional profiles. The preliminary observations thus demonstrated that SDSL?CEPR spectroscopy is not only an effective technique to reveal the mobility of single residue sites in LSECtin-CRD but also that the functions of single residue sites may be indicated by their conformational dynamics.  相似文献   

8.
It is well recognized that thermal motions of atoms in the protein native state, the fluctuations about the minimum of the global free energy, are well reproduced by the simple elastic network models (ENMs) such as the anisotropic network model (ANM). Elastic network models represent protein dynamics as vibrations of a network of nodes (usually represented by positions of the heavy atoms or by the C(α) atoms only for coarse-grained representations) in which the spatially close nodes are connected by harmonic springs. These models provide a reliable representation of the fluctuational dynamics of proteins and RNA, and explain various conformational changes in protein structures including those important for ligand binding. In the present paper, we study the problem of protein structure refinement by analyzing thermal motions of proteins in non-native states. We represent the conformational space close to the native state by a set of decoys generated by the I-TASSER protein structure prediction server utilizing template-free modeling. The protein substates are selected by hierarchical structure clustering. The main finding is that thermal motions for some substates, overlap significantly with the deformations necessary to reach the native state. Additionally, more mobile residues yield higher overlaps with the required deformations than do the less mobile ones. These findings suggest that structural refinement of poorly resolved protein models can be significantly enhanced by reduction of the conformational space to the motions imposed by the dominant normal modes.  相似文献   

9.
Determining the structure of a protein and its transformation under different conditions is key to understanding its activity. The structural stability and activity of proteins in aqueous–organic solvent mixtures, which is an intriguing topic of research in biochemistry, is dependent on the nature of the protein and the properties of the medium. Herein, the effect of a commonly used cosolvent, dimethyl sulfoxide (DMSO), on the structure and conformational dynamics of bovine serum albumin (BSA) protein is studied by fluorescence correlation spectroscopy (FCS) measurements on fluorescein isothiocyanate (FITC)‐labeled BSA. The FCS study reveals a change of the hydrodynamic radius of BSA from 3.7 nm in the native state to 7.0 nm in the presence of 40 % DMSO, which suggests complete unfolding of the protein under these conditions. Fluorescence self‐quenching of FITC has been exploited to understand the conformational dynamics of BSA. The time constant of the conformational dynamics of BSA is found to change from 35 μs in its native state to 50 μs as the protein unfolds with increasing DMSO concentration. The FCS results are corroborated by the near‐UV circular dichroism spectra of the protein, which suggest a loss of its tertiary structure with increasing concentration of DMSO. The intrinsic fluorescence of BSA and the fluorescence response of 1‐anilinonaphthalene‐8‐sulfonic acid, used as a probe molecule, provide information that is consistent with the FCS measurements, except that aggregation of BSA is observed in the presence of 40 % DMSO in the ensemble measurements.  相似文献   

10.
Hydroxyl radical protein footprinting coupled to mass spectrometry has been developed over the last decade and has matured to a powerful method for analyzing protein structure and dynamics. It has been successfully applied in the analysis of protein structure, protein folding, protein dynamics, and protein–protein and protein–DNA interactions. Using synchrotron radiolysis, exposure of proteins to a ‘white’ X‐ray beam for milliseconds provides sufficient oxidative modification to surface amino acid side chains, which can be easily detected and quantified by mass spectrometry. Thus, conformational changes in proteins or protein complexes can be examined using a time‐resolved approach, which would be a valuable method for the study of macromolecular dynamics. In this review, we describe a new application of hydroxyl radical protein footprinting to probe the time evolution of the calcium‐dependent conformational changes of gelsolin on the millisecond timescale. The data suggest a cooperative transition as multiple sites in different molecular subdomains have similar rates of conformational change. These findings demonstrate that time‐resolved protein footprinting is suitable for studies of protein dynamics that occur over periods ranging from milliseconds to seconds. In this review, we also show how the structural resolution and sensitivity of the technology can be improved as well. The hydroxyl radical varies in its reactivity to different side chains by over two orders of magnitude, thus oxidation of amino acid side chains of lower reactivity are more rarely observed in such experiments. Here we demonstrate that the selected reaction monitoring (SRM)‐based method can be utilized for quantification of oxidized species, improving the signal‐to‐noise ratio. This expansion of the set of oxidized residues of lower reactivity will improve the overall structural resolution of the technique. This approach is also suggested as a basis for developing hypothesis‐driven structural mass spectrometry experiments. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

11.
We previously showed for the proteins BCL-XL, IL-2, and MDM2 that transient pockets at their protein–protein binding interfaces can be identified by applying the PASS algorithm to molecular dynamics (MD) snapshots. We now investigated which aspects of the natural conformational dynamics of proteins induce the formation of such pockets. The pocket detection protocol was applied to three different conformational ensembles for the same proteins that were extracted from MD simulations of the inhibitor bound crystal conformation in water and the free crystal/NMR structure in water and in methanol. Additional MD simulations studied the impact of backbone mobility. The more efficient CONCOORD or normal mode analysis (NMA) techniques gave significantly smaller pockets than MD simulations, whereas tCONCOORD generated pockets comparable to those observed in MD simulations for two of the three systems. Our findings emphasize the influence of solvent polarity and backbone rearrangements on the formation of pockets on protein surfaces and should be helpful in future generation of transient pockets as putative ligand binding sites at protein–protein interfaces. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

12.
Force generation in muscle during contraction arises from direct interaction of the two main protein components of the muscle, myosin and actin. The process is driven by the energy liberated from the hydrolysis of ATP. In the presence of CaATP the energy released from hydrolysis produces conformational changes in myosin and actin, which can be manifested as an internal motion of myosin head while bound to actin. It is suggested that myosin heads attached to actin produce conformational changes during the hydrolysis process of ATP, which results in a strain in the head portion of myosin in an ATP-dependent manner. These structural changes lead to a large rotation of myosin neck region relieving the strain. Paramagnetic probes and EPR spectroscopy provide direct method in which the rotation and orientation of specifically labelled proteins can be followed during muscle activity. In order to find correlation between local and global structural changes in the intermediate states of the ATPase cycle, the spectroscopic measurements were combined with DSC measurements that report domain stability and interactions.  相似文献   

13.
Cations are specifically recognized by numerous proteins. Cations may play a structural role, as cofactors stabilizing their binding partners, or a functional role, as cofactors activating their binding partners or being themselves involved in enzymatic reactions. Despite their small size, their charge density and their specific interaction with highly charged residues allow them to induce significant conformational changes on their binding proteins. The protein conformational change induced by cation binding may be as large as to account for the complete folding of a protein (as evidenced in Hepatitis C NS3 protease, or human rhinovirus 2A protease), and they may also trigger oligomerization (as in calcium-binding protein 1). Especially intriguing is the ability of cation-binding proteins of discriminating between very similar cations. In particular, calcium and magnesium are recognized by proteins with markedly different binding affinities and cause significantly different conformational changes and stabilization effects in the binding proteins (as in the fifth ligand binding repeat of the LDL receptor binding domain, calcium-binding protein 1, or parvalbumin). This article summarizes recent findings on the structural and energetic impact of cation binding to different proteins. A general framework can be envisaged in which cations can be considered as a special type of allosteric effectors able to modulate the functional properties of proteins, in particular the ability to interact with biological targets, by altering their conformational equilibrium.  相似文献   

14.
New spin labeling strategies have immense potential in studying protein structure and dynamics under physiological conditions with electron paramagnetic resonance (EPR) spectroscopy. Here, a new spin‐labeled chemical recognition unit for switchable and concomitantly high affinity binding to His‐tagged proteins was synthesized. In combination with an orthogonal site‐directed spin label, this novel spin probe, Proxyl‐trisNTA (P‐trisNTA) allows the extraction of structural constraints within proteins and macromolecular complexes by EPR. By using the multisubunit maltose import system of E. coli: 1) the topology of the substrate‐binding protein, 2) its substrate‐dependent conformational change, and 3) the formation of the membrane multiprotein complex can be extracted. Notably, the same distance information was retrieved both in vitro and in situ allowing for site‐specific spin labeling in cell lysates under in‐cell conditions. This approach will open new avenues towards in‐cell EPR.  相似文献   

15.
A popular strategy in the de novo design of stable β‐sheet structures for various biomedical applications is the incorporation of aromatic pairs at the non‐hydrogen‐bonding (NHB) position. However, it is important to explicitly understand how aryl pair packing at the NHB region is coordinated with backbone structural rearrangements, and to delineate the benefits and drawbacks associated with stereopositional choice of dissimilar aromatic pairs. Here, we probe the consequences of flipped Trp/Tyr pairs by using engineered permutants at the NHB position of dodecapeptide β‐hairpins, proximal and distal to the turn. Extensive conformational analysis of these peptides using NMR and CD spectroscopy reveal that a classic Edge‐to‐Face and Face‐to‐Edge geometry at the proximal and distal aromatic pairs, respectively, in YW‐WY, is the most stabilizing. Such a preferred packing geometry in YW‐WY results in a highly twisted β‐sheet backbone, with Trp always providing a ‘Face’ orientation to its dissimilar aromatic partner Tyr. Flipping the proximal and/or distal aromatic pair distorts the ideal T‐shaped geometry, and results in alternate aryl arrangements that can adversely affect strand twist and β‐sheet stability. Our study reveals the existence of a strong stereopositional influence on the packing of dissimilar aromatic pairs. Our findings highlight the importance of modeling physical interaction forces while designing protein and peptide structures for functional applications.  相似文献   

16.
Proteins usually undergo conformational transitions between structurally disparate states to fulfill their functions. The large-scale allosteric conformational transitions are believed to involve some key residues that mediate the conformational movements between different regions of the protein. In the present work, a thermodynamic method based on the elastic network model is proposed to predict the key residues involved in protein conformational transitions. In our method, the key functional sites are identified as the residues whose perturbations largely influence the free energy difference between the protein states before and after transition. Two proteins, nucleotide binding domain of the heat shock protein 70 and human/rat DNA polymerase β, are used as case studies to identify the critical residues responsible for their open-closed conformational transitions. The results show that the functionally important residues mainly locate at the following regions for these two proteins: (1) the bridging point at the interface between the subdomains that control the opening and closure of the binding cleft; (2) the hinge region between different subdomains, which mediates the cooperative motions between the corresponding subdomains; and (3) the substrate binding sites. The similarity in the positions of the key residues for these two proteins may indicate a common mechanism in their conformational transitions.  相似文献   

17.
This study reveals the essence of ligand recognition mechanisms by which calmodulin (CaM) controls a variety of Ca(2+) signaling processes. We study eight forms of calcium-loaded CaM each with distinct conformational states. Reducing the structure to two degrees of freedom conveniently describes main features of the conformational changes of CaM via simultaneous twist-bend motions of the two lobes. We utilize perturbation-response scanning (PRS) technique, coupled with molecular dynamics simulations. PRS is based on linear response theory, comprising sequential application of directed forces on selected residues followed by recording the resulting protein coordinates. We analyze directional preferences of the perturbations and resulting conformational changes. Manipulation of a single residue reproduces the structural change more effectively than that of single/pairs/triplets of collective modes of motion. Our findings also give information on how the flexible linker acts as a transducer of binding information to distant parts of the protein. Furthermore, by perturbing residue E31 located in one of the EF hand motifs in a specific direction, it is possible to induce conformational change relevant to five target structures. Independently, using four different pK(a) calculation strategies, we find this particular residue to be the charged residue (out of a total of 52), whose ionization state is most sensitive to subtle pH variations in the physiological range. It is plausible that at relatively low pH, CaM structure is less flexible. By gaining charged states at specific sites at a pH value around 7, such as E31 found in the present study, local conformational changes in the protein will lead to shifts in the energy landscape, paving the way to other conformational states. These findings are in accordance with Fluorescence Resonance Energy Transfer (FRET) measured shifts in conformational distributions towards more compact forms with decreased pH. They also corroborate mutational studies and proteolysis results which point to the significant role of E31 in CaM dynamics.  相似文献   

18.
Karger BL  Blanco R 《Talanta》1989,36(1-2):243-248
Whenever proteins are found in environments different from those provided by physiological conditions, structural alterations can occur which can dramatically affect their adsorption and chromatographic behavior. The resultant behavior is often kinetically controlled and thus dependent on such factors as contact time of the protein with the adsorbent surface. Examples are given of the appearance of multiple peaks from seemingly pure species, as a result of these structural changes. In one case (papain in reversed-phase LC), multiple peaks are shown to arise from different conformational states. In a second case (beta-lactoglobulin A in hydrophobic interaction chromatography), a series of three peaks is a result of self-association or aggregation. Finally, recent work on an examination of structural changes of proteins on chromatographic supports, by means of intrinsic fluorescence and HPLC, is presented. The value of these studies for the elucidation of the retention mechanism in HPLC and the assessment of purity of proteins is demonstrated.  相似文献   

19.
Transition between conformational states in proteins is being recognized as a possible key factor of function. In support of this, hidden dynamic NMR structures were detected in several cases up to populations of a few percent. Here, we show by two‐ and three‐state analysis of thermal unfolding, that the population of hidden states may weight 20–40 % at 298 K in a disulfide‐rich protein. In addition, sensitive 15N‐CEST NMR experiments identified a low populated (0.15 %) state that was in slow exchange with the folded PAF protein. Remarkably, other techniques failed to identify the rest of the NMR “dark matter”. Comparison of the temperature dependence of chemical shifts from experiments and molecular dynamics calculations suggests that hidden conformers of PAF differ in the loop and terminal regions and are most similar in the evolutionary conserved core. Our observations point to the existence of a complex conformational landscape with multiple conformational states in dynamic equilibrium, with diverse exchange rates presumably responsible for the completely hidden nature of a considerable fraction.  相似文献   

20.
The metal binding properties of proteins are biologically significant, particularly in relationship to the molecular origins of disease and the discovery of therapeutic pharmaceutical treatments. Herein, we demonstrate that selective noncovalent adduct protein probing mass spectrometry (SNAPP-MS) is a sensitive technique to investigate the structural effects of protein-metal interactions. We utilize specific, noncovalent interactions between 18-crown-6 ether (18C6) and lysine to probe protein structure in the presence and absence of metal ions. Application of SNAPP-MS to the calmodulin-Ca2+ system demonstrates that changes in protein structure are reflected in a substantial change in the number and intensity of 18C6s, which bind to the protein as observed by MS. In this manner, SNAPP is demonstrated to be a sensitive technique for monitoring ligand-induced conformational rearrangements in proteins. In addition, SNAPP is well-suited to examine the properties of natively unfolded proteins, where structural changes are more difficult to detect by other methods. For example, α-synuclein is a protein associated in the pathology of Parkinson’s disease, which is known to aggregate more rapidly in the presence of Al3+ and Cu2+. The 18C6 SNAPP distributions for α-synuclein change dramatically in the presence of 3 μM Al3+, revealing that Al3+ binding causes a significant change in the conformational dynamics of the monomeric form of this disordered protein. In contrast, binding of Cu2+ does not induce a significant shift in 18C6 binding, suggesting that noteworthy structural reorganizations at the monomeric level are minimal. These results are consistent with the idea that the metal-induced aggregation caused by Al3+ and Cu2+ proceed by independent pathways.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号