首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We study quantum motion around a classical heteroclinic point of a single trapped ion interacting with a strong laser standing wave. We construct a set of exact coherent states of the quantum system and from the exact solutions reveal that quantum signatures of chaos can be induced by the adiabatic interaction between the trapped ion and the laser standing wave, where the quantum expectation values of position and momentum correspond to the classically chaotic orbit. The chaotic region on the phase space is illustrated. The energy crossing and quantum resonance in time evolution and the exponentially increased Heisenberg uncertainty are found. The results suggest a theoretical scheme for controlling the unstable regular and chaotic motions.  相似文献   

2.
The structure of the global "quantum phase space" is analyzed for the harmonic oscillator perturbed by a monochromatic wave in the limit when the perturbation amplitude is small. Usually, the phenomenon of quantum resonance was studied in nondegenerate [G. M. Zaslavsky, Chaos in Dynamic Systems (Harwood Academic, Chur, 1985)] and degenerate [Demikhovskii, Kamenev, and Luna-Acosta, Phys. Rev. E 52, 3351 (1995)] classically chaotic systems only in the particular regions of the classical phase space, such as the center of the resonance or near the separatrix. The system under consideration is degenerate, and even an infinitely small perturbation generates in the classical phase space an infinite number of the resonant cells which are arranged in the pattern with the axial symmetry of the order 2&mgr; (where &mgr; is the resonance number). We show analytically that the Husimi functions of all Floquet states (the quantum phase space) have the same symmetry as the classical phase space. This correspondence is demonstrated numerically for the Husimi functions of the Floquet states corresponding to the motion near the elliptic stable points (centers of the classical resonance cells). The derived results are valid in the resonance approximation when the perturbation amplitude is small enough, and the stochastic layers in the classical phase space are exponentially thin. The developed approach can be used for studying a global symmetry of more complicated quantum systems with chaotic behavior. (c) 2000 American Institute of Physics.  相似文献   

3.
We present a detailed numerical study of a chaotic classical system and its quantum counterpart. The system is a special case of a kicked rotor and for certain parameter values possesses cantori dividing chaotic regions of the classical phase space. We investigate the diffusion of particles through a cantorus. A quantum analysis confirms that the cantori act as barriers. We numerically estimate the classical phase space flux through the cantorus per kick and relate this quantity to the behavior of the quantum system. We introduce decoherence via environmental interactions with the quantum system and observe the subsequent increase in the transport of quantum particles through the boundary.  相似文献   

4.
宋立军  严冬  盖永杰  王玉波 《物理学报》2010,59(6):3695-3699
量子化的Dicke模型在非旋波近似条件下表现为量子混沌动力学特征.利用单粒子一阶时间关联函数,通过数值计算详细考察了Dicke模型中单粒子相干动力学特性.结果表明:当初始相干态处在混沌区域时,一阶时间关联函数曲线衰减较快,而当初始相干态处在规则区域时,一阶时间关联函数曲线衰减较慢,单粒子相干动力学对初态具有较强的敏感性,经典混沌抑制量子相干.考察单粒子相干动力学在相空间的平均演化性质,得到一种较好的量子经典对应关系.最后研究了相空间单粒子相干的整体动力学性质,更好地揭示了相空间的混沌和规则结构.  相似文献   

5.
宋立军  严冬  刘烨 《物理学报》2011,60(12):120302-120302
量子Fisher信息作为经典Fisher信息的自然推广,与量子信息中的纠缠判断具有密切联系.在表现为典型量子混沌特征的受击两分量玻色-爱因斯坦凝聚系统中,研究了与经典相空间对应的纠缠和量子Fisher信息动力学性质. 结果表明,初次撞击后的系统量子态是纠缠的,与初态所处相空间中的混乱程度无关.而量子Fisher信息的动力学演化对系统初态非常敏感,当初态处于混沌区域时,量子Fisher信息值比初态处于规则区域时大.利用这种较好的量子-经典对应关系,得到量子Fisher信息可以刻画量子混沌的结论. 关键词: 量子Fisher信息 玻色-爱因斯坦凝聚 量子混沌 量子-经典对应  相似文献   

6.
通过引入等效普朗克常数,将量子系统中基本动力学变量的期望值和经典系统中基本动力学变量的精确值的时间演化行为相比较,分析了两者产生差异的因素,规则运动主要是和量子效应有关,而混沌运动则是和动力学效应有关,即与系统的动力学对称性破坏相联系.在此基础上,比较了量子相空间测不准度和李雅谱诺夫指数,给出了令人满意的说明.  相似文献   

7.
宋立军  严冬  盖永杰  王玉波 《物理学报》2011,60(2):20302-020302
非旋波近似条件下Dicke模型表现为量子混沌动力学特征.在详细考察Dicke模型经典相空间结构特点的基础上,采用经典-量子"一对多"的思想,即经典相空间中的一点对应于量子体系两个初始相干态的演化,利用对两个初态量子纠缠动力学演化取统计平均的方法,得到了与经典相空间对应非常好的量子相空间结构.数值计算结果表明:经典混沌有利地促进系统两体纠缠的产生,平均纠缠可以作为量子混沌的标识,利用平均纠缠可以得到一种较好的量子动力学与经典相空间的对应关系. 关键词: Dicke模型 非旋波近似 量子混沌 经典量子对应  相似文献   

8.
We review the fundamental concepts of quantum chaos in Hamiltonian systems. The quantum evolution of bound systems does not possess the sensitive dependence on initial conditions, and thus no chaotic behaviour occurs, whereas the study of the stationary solutions of the Schrödinger equation in the quantum phase space (Wigner functions) reveals precise analogy of the structure of the classical phase portrait. We analyze the regular eigenstates associated with invariant tori in the classical phase space, and the chaotic eigenstates associated with the classically chaotic regions, and the corresponding energy spectra. The effects of quantum localization of the chaotic eigenstates are treated phenomenologically, resulting in Brody-like level statistics, which can be found also at very high-lying levels, while the coupling between the regular and the irregular eigenstates due to tunneling, and of the corresponding levels, manifests itself only in low-lying levels.  相似文献   

9.
A recently developed unified theory of classical and quantum chaos, based on the de Broglie-Bohm (Hamilton-Jacobi) formulation of quantum mechanics is presented and its consequences are discussed. The quantum dynamics is rigorously defined to be chaotic if the Lyapunov number, associated with the quantum trajectories in de Broglie-Bohm phase space, is positive definite. This definition of quantum chaos which under classical conditions goes over to the well-known definition of classical chaos in terms of positivity of Lyapunov numbers, provides a rigorous unified definition of chaos on the same footing for both the dynamics. A demonstration of the existence of positive Lyapunov numbers in a simple quantum system is given analytically, proving the existence of quantum chaos. Breaking of the time-reversal symmetry in the corresponding quantum dynamics under chaotic evolution is demonstrated. It is shown that the rigorous deterministic quantum chaos provides an intrinsic mechanism towards irreversibility of the Schrodinger evolution of the wave function, without invoking ‘wave function collapse’ or ‘measurements’  相似文献   

10.
A Tomita (standard) Hilbert space representation of a physical system with a toral phase space is presented, both for the classical and for the quantal case. The dynamics of such a system, subject to a regular series of linear kicks, is derived in a discrete-time form, and is shown to be identical to the Benatti-Narnhofer-Sewell quantum Arnol'd cat map in the quantum case. It is shown that this quantum system is chaotic in the sense of having exponentially decaying autocorrelation functions.  相似文献   

11.
We present a classical and quantum mechanical study of an Andreev billiard with a chaotic normal dot. We demonstrate that the nonexact velocity reversal and the diffraction at the edges of the normal-superconductor contact render the classical dynamics of these systems mixed indicating the limitations of a widely used retracing approximation. We point out the close relation between the mixed classical phase space and the properties of the quantum states of Andreev billiards, including periodic orbit scarring and localization of the wave function onto other classical phase space objects such as intermittent regions and quantized tori.  相似文献   

12.
The dynamics of cold atoms in conservative optical lattices obviously depends on the geometry of the lattice. But very similar lattices may lead to deeply different dynamics. In a 2D optical lattice with a square mesh, it is expected that the coupling between the degrees of freedom leads to chaotic motions. However, in some conditions, chaos remains marginal. The aim of this paper is to understand the dynamical mechanisms inhibiting the appearance of chaos in such a case. As the quantum dynamics of a system is defined as a function of its classical dynamics – e.g. quantum chaos is defined as the quantum regime of a system whose classical dynamics is chaotic – we focus here on the dynamical regimes of classical atoms inside a well. We show that when chaos is inhibited, the motions in the two directions of space are frequency locked in most of the phase space, for most of the parameters of the lattice and atoms. This synchronization, not as strict as that of a dissipative system, is nevertheless a mechanism powerful enough to explain that chaos cannot appear in such conditions.  相似文献   

13.
Quantum relaxation is studied in coupled quantum baker's maps. The classical systems are exactly solvable Kolmogorov systems, for which the exponential decay to equilibrium is known. They model the fundamental processes of transport in classically chaotic phase space. The quantum systems, in the absence of global symmetry, show a marked saturation in the level of transport, as the suppression of diffusion in the quantum kicked rotor, and eigenfunction localization in the position basis. In the presence of a global symmetry we study another model that has classically an identical decay to equilibrium, but-quantally shows resonant transport, no saturation, and large fluctuations around equilibrium. We generalize the quantization to finite multibaker maps. As a byproduct we introduce some simple models of quantal tunneling between classically chaotic regions of phase space.  相似文献   

14.
We discuss a phase space representation of quantum dynamics of systems with many degrees of freedom. This representation is based on a perturbative expansion in quantum fluctuations around one of the classical limits. We explicitly analyze expansions around three such limits: (i) corpuscular or Newtonian limit in the coordinate-momentum representation, (ii) wave or Gross-Pitaevskii limit for interacting bosons in the coherent state representation, and (iii) Bloch limit for the spin systems. We discuss both the semiclassical (truncated Wigner) approximation and further quantum corrections appearing in the form of either stochastic quantum jumps along the classical trajectories or the nonlinear response to such jumps. We also discuss how quantum jumps naturally emerge in the analysis of non-equal time correlation functions. This representation of quantum dynamics is closely related to the phase space methods based on the Wigner-Weyl quantization and to the Keldysh technique. We show how such concepts as the Wigner function, Weyl symbol, Moyal product, Bopp operators, and others automatically emerge from the Feynmann's path integral representation of the evolution in the Heisenberg representation. We illustrate the applicability of this expansion with various examples mostly in the context of cold atom systems including sine-Gordon model, one- and two-dimensional Bose-Hubbard model, Dicke model and others.  相似文献   

15.
We explain the mechanism leading to directed chaotic transport in Hamiltonian systems with spatial and temporal periodicity. We show that a mixed phase space comprising both regular and chaotic motion is required and we derive a classical sum rule which allows one to predict the chaotic transport velocity from properties of regular phase-space components. Transport in quantum Hamiltonian ratchets arises by the same mechanism as long as uncertainty allows one to resolve the classical phase-space structure. We derive a quantum sum rule analogous to the classical one, based on the relation between quantum transport and band structure.  相似文献   

16.
For quantum systems of finitely many particles as well as for boson quantum field theories, the classical limit of the expectation values of products of Weyl operators, translated in time by the quantum mechanical Hamiltonian and taken in coherent states centered inx- andp-space around? ?1/2 (coordinates of a point in classical phase space) are shown to become the exponentials of coordinate functions of the classical orbit in phase space. In the same sense,? ?1/2 [(quantum operator) (t) — (classical function) (t)] converges to the solution of the linear quantum mechanical system, which is obtained by linearizing the non-linear Heisenberg equations of motion around the classical orbit.  相似文献   

17.
In this paper we study the quantum cosmology of homogeneous and isotropic cosmology, via the Weyl–Wigner–Groenewold–Moyal formalism of phase space quantization, with perfect fluid as a matter source. The corresponding quantum cosmology is described by the Moyal–Wheeler-DeWitt equation which has exact solutions in Moyal phase space, resulting in Wigner quasiprobability distribution functions peaking around the classical paths for large values of scale factor. We show that the Wigner functions of these models are peaked around the non-singular universes with quantum modified density parameter of radiation.  相似文献   

18.
A simple model of quantum ratchet transport that can generate unbounded linear acceleration of the quantum ratchet current is proposed, with the underlying classical dynamics fully chaotic. The results demonstrate that generic quantum ratchet transport can occur with any type of classical phase space structure. The quantum ratchet transport with full classical chaos is also shown to be very robust to noise due to the large linear acceleration afforded by the quantum dynamics. One possible experiment allowing observation of these predictions is suggested.  相似文献   

19.
We study the resonance (or Gamow) eigenstates of open chaotic systems in the semiclassical limit, distinguishing between left and right eigenstates of the nonunitary quantum propagator and also between short-lived and long-lived states. The long-lived left (right) eigenstates are shown to concentrate as variant Planck's over 2pi-->0 on the forward (backward) trapped set of the classical dynamics. The limit of a sequence of eigenstates [psi(variant Planck's over)] 2pi-->0 is found to exhibit a remarkably rich structure in phase space that depends on the corresponding limiting decay rate. These results are illustrated for the open baker's map, for which the probability density in position space is observed to have self-similarity properties.  相似文献   

20.
We report an experimental and theoretical study of the dynamics of cold atoms subjected to pairs of closely spaced pulses in an optical lattice. For all previously studied delta-kicked systems, chaotic classical dynamics shows diffusion with short-time (2- or 3-kick) correlations; here, chaotic diffusion combines with new types of long-ranged global correlations, between all kick pairs, which control transport through trapping regions in phase space. Correlations are studied in the classical regime, but the diffusive behavior observed in experiment depends on the quantum dynamical localization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号