首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Two supramolecular complexes: [Co(2,6-PDC)(Hdmpz)3]·H2O (1) and [Zn(2,6-PDC)(Hdmpz)2] (2) {2,6-PDC=pyridine-2,6-dicarboxylic acid, Hdmpz=3,5-dimethylpyrazol}, self-assembles via O-H?O and N-H?O hydrogen bondings into supramolecular networks, which are characterized by elemental analyses, IR spectra and single crystal X-ray diffraction analysis. Both of them consist of two-dimensional networks that are stacked together by typical hydrogen bonding interactions (i.e. O-H?O and N-H?O), which often play important roles in the formation of low-dimensional into high-dimensional supramolecular networks. In addition, quantum chemistry calculations and surface photovoltage spectroscopy are performed firstly with the complexes.  相似文献   

2.
The supramolecular interplay of Me(3)Sn(+) and [M(CN)(2n)](n-) ions (n=3 and 4) with either 4,4'-bipyridine (bpy), trans-bis(4-pyridyl)ethene (bpe) or 4cyanopyridine (cpy) in the presence of H(2)O has been investigated for the first time. Crystal structures of the six novel assemblies: [(Me(3)Sn)(4)Mo(IV)(CN)(8).2 H(2)O.bpy] (8) and [(Me(3)Sn)(4)Mo(IV)(CN)(8).2 H(2)O.bpe] (8 a; isostructural), [(Me(3)Sn)(3)Fe(III)(CN)(6).4 H(2)O.bpy] (9), [(Me(3)Sn)(3)Co(III)(CN)(6).3 H(2)O.3/2 bpy] (10), [(Me(3)Sn)(4)Fe(II)(CN)(6).H(2)O.3/2 bpy] (11), and [(Me(3)Sn)(4)Ru(II)(CN)(6).2 H(2)O.3/2 cpy] (12) are presented. H(2)O molecules are usually coordinated to tin atoms and involved in two significant O-H.N hydrogen bonds, wherein the nitrogen atoms belong either to bpy (bpe, cpy) molecules or to M-coordinated cyanide ligands. Extended supramolecular assemblies such as -CN-->Sn(Me(3))<--O(H.)H.N(L)N.HO(H.)-->Sn(Me(3))<--NC- (L=bpy, bpe or cpy) function as efficient metal connectors (or spacers) in the structures of all six compounds. Only in the three-dimensional framework of 11, one third of all bpy molecules is involved in coordinative N-->Sn bonds. The supramolecular architecture of 9 involves virtually non-anchored (to cyanide N atoms), Me(3)Sn(+) units with a strictly planar SnC(3) skeleton, and two zeolitic H(2)O molecules. Pyrazine (pyz) is surprisingly reluctant to afford assemblies similar to 8-12, however, the genuine host-guest systems [(Me(3)Sn)(4)Mo(CN)(8).0.5pyz] and [(Me(3)Sn)(4)Mo(CN)(8).pym] (pym=pyrimidine) could be isolated and also structurally characterized.  相似文献   

3.
The synthesis and structure of two yttrium benzene dicarboxylates, 1 is proportional to [[Y2(C12N2H8)2(C8H4O4)3].H2O], I and 3 is proportional to [[Y2(C12N2H8)2(C8H4O4)3]], II with one- and three-dimensional structure has been accomplished employing hydrothermal methods in the presence of 1,10-phenanthroline. While I is formed with phthalic aid (1,2-BDC), II is formed using isophthalic acid (1,3-BDC). Both the structures appear to have comparable building units, an eight-membered ring and a paddle-wheel arrangement, connected through the carboxylic acid. The 1,10-phenanthroline, connected to Y as a secondary ligand, occupies the inter-chain spaces in I, and projects into the channels in II. The channels in II are inter-connected. Photoluminescence studies indicate that both I and II exhibit a bathochromic shift with respect to the acids (1,2-BDC and 1,3-BDC) and a hypsochromic shift with respect to 1,10-phenanthroline. Both the compounds exhibit reasonable pi...pi interactions.  相似文献   

4.
Two 3D metal-organic supramolecular complexes [Zn2(btec)(2, 2′-bpy)2(H2O)2] (1), [Cd2(dpa)2(phen)2(H2O)2] (2) have been prepared by hydrothermal reaction and characterized by IR and single-crystal X-ray diffraction analysis. The 3D architectures of 1 and 2 both possess rectangular cavities. Furthermore, compounds 1 and 2 both show intense photoluminescent properties at room temperature.  相似文献   

5.
The 1?:?2 M-ratio reaction between cuprous bromide and pyrazole derivatives in toluene results in mononuclear Cu(I) complexes [CuBr(pyrazole)2]. The complexes have been characterized by 1H NMR spectroscopy and elemental analysis. The molecular structure, established by single-crystal X-ray diffraction, features a trigonal planar geometry around copper, with monodentate pyrazole derivatives. All the Cu(I) complexes are luminescent in the solid state at ambient temperature. Intense blue or blue-green emission in the solid state is observed for these complexes, with the maxima ranging from 431 to 493 nm. The observed photoluminescence could be ascribed to the metal-to-ligand charge-transfer excited states, probably mixed with some halide-to-ligand character. The microsecond lifetime scale of the complexes implies that these transitions arise from the triplet excited states.  相似文献   

6.
The dinuclear complex [[Tl(eta6-toluene)][Au(C6Cl5)2]] (1) displays very intense blue phosphorescence and a rigidochromic behavior in the solid state. The photophysical measurements in a glassy solution display an oligomerization process via metal-metal interactions. Density functional theory calculations show a distortion of the aurate-thallium T shape in the lowest triplet excited state, leading to a triplet metal-to-metal charge-transfer state.  相似文献   

7.
A novel beta-diketone, 4,4,5,5,5-pentafluoro-1-(naphthalen-2-yl)pentane-1,3-dione (HPFNP), which contains polyfluorinated alkyl group, as well as the long conjugated naphthyl group, has been used for the synthesis of a series of new tris(beta-diketonate)europium(III) complexes of the general formula Eu(PFNP)3 x L [where L = H2O, 2,2'-bipyridine (bpy), 1,10-phenanthroline (phen), 4,7-diphenyl-1,10-phenanthroline (bath)] and characterized by various spectroscopic techniques. The single-crystal X-ray diffraction analysis of Eu(PFNP) 3.bpy revealed that the complex is mononuclear, the central Eu(3+) ion is coordinated by six oxygen atoms furnished by three beta-diketonate ligands, and two nitrogen atoms from a bidentate bipyridyl ligand, in an overall distorted square prismatic geometry. Further, analysis of the X-ray crystal data of the above complex also revealed interesting 1D, 2D, and 3D networks based on intra- and intermolecular hydrogen bonds. The room-temperature PL spectra of the complexes are composed of typical Eu(3+) red emissions, assigned to transitions between the first excited state ((5)D0) and the multiplet ((7)F(0-4)). The results demonstrate that the substitution of solvent molecules by bidentate nitrogen ligands in Eu(PFNP)3 x H2O x EtOH greatly enhances the quantum yields and lifetime values.  相似文献   

8.
A new series of luminescent cyclometalated iridium(III) bipyridine estradiol conjugates [Ir(N-C)2(N-N)](PF6) (N-N = 5-(4-(17alpha-ethynylestradiolyl)phenyl)-2,2'-bipyridine, bpy-est, HN-C = 2-phenylpyridine, Hppy (1 a), 1-phenylpyrazole, Hppz (2 a), 7,8-benzoquinoline, Hbzq (3 a), 2-phenylquinoline, Hpq (4 a), 2-((1,1'-biphenyl)-4-yl)benzothiazole, Hbsb (5 a); N-N = 4-(N-(6-(4-(17alpha-ethynylestradiolyl)benzoylamino)hexyl)aminocarbonyl)-4'-methyl-2,2'-bipyridine, bpy-C6-est, HN-C = Hppy (1 b), Hppz (2 b), Hbzq (3 b), Hpq (4 b), Hbsb (5 b)) was synthesized, characterized, and their photophysical and electrochemical properties studied. Upon photoexcitation, all the complexes displayed intense and long-lived emission in fluid solutions at 298 K and in low-temperature glass. The emission of complexes 1 a-3 a and 1 b-3 b was assigned to a triplet metal-to-ligand charge-transfer ((3)MLCT) (dpi(Ir)-->pi*(bpy-est and N-C-)) state mixed with some triplet intraligand ((3)IL) (pi-->pi*) (N-C- and N-N) character. However, the emissive states of the pq- and bsb- complexes 4 a, 4 b, 5 a, and 5 b showed substantial (3)IL (pi-->pi*) (pq-/bsb-) character. The lipophilicity of all the complexes was determined by reversed-phase HPLC. Upon binding to estrogen receptor alpha, all of these iridium(III) estradiol conjugates exhibited emission enhancement and lifetime extension, rendering them a novel series of luminescent probes for this receptor.  相似文献   

9.
The synthesis and characterization of 10 cyano-bridged trinuclear mixed-valence compounds of the form [(NH3)5M-NC-FeII(CN)4-CN-M'(NH3)5]n+ (M = RuIII, OsIII, CrIII, or PtIV; n = 2, 3, or 4) is reported. The electronic spectra of these supramolecular compounds exhibit a single intervalent (IT) absorption band for each nondegenerate Fe-->M/M' transition. The redox potential of the Fe(II) center is shifted more positive with the addition of each coordinated metal complex, while the redox potentials of the pendant metals vary only slightly from their dinuclear counterparts. As a result, the Fe-->M IT bands are blue-shifted from those in the corresponding dinuclear mixed-valence compounds. The energies of these IT bands show a linear correlation with the ground-state thermodynamic driving force, as predicted by classical electron transfer theory. Estimates of the degree of electronic coupling (Hab) between the metal centers using a theoretical analysis of the IT band shapes indicate that most of these values are similar to those for the corresponding dinuclear species. Notable exceptions occur for the Fe-->M IT transitions in Os-Fe-M (M = Cr or Pt). The enhanced electronic coupling in these two species can be explained as a result of excited state mixing between electron transfer and/or ligand-based charge transfer states and an intensity-borrowing mechanism. Additionally, the possibility of electronic coupling between the remote metal centers in the Ru-Fe-Ru species is discussed in order to explain the observation of two closely spaced redox waves for the degenerate Ru(III) acceptors.  相似文献   

10.
A series of neutral luminescent molecular rectangles [[Re(CO)(3)(mu-bpy)Br][Re(CO)(3)(mu-L)Br]](2) (1-4) having fac-Re(CO)(3)Br as corners and 4,4'-bipyridine (bpy) as the bridging ligand on one side and other bipyridyl ligands of varying length (L) on the other side have been synthesized and characterized. The crystal structure of 1 shows a rectangular cavity with the dimensions of 11.44 x 7.21 A. When the cavity size is tuned from 1 to 4, a dimension of 11.4 x 20.8 A could be achieved, as revealed by the molecular modeling. These rectangles exhibit luminescence in solution at room temperature. In particular, compound 4 containing 1,4-bis(4'-pyridylethynyl)benzene (bpeb) as bridging ligand shows the excited-state lifetime of 495 ns. Fine-tuning of the cavity size of the rectangles improves their excited-state properties. These properties facilitate the study of excited-state electron-transfer reactions with electron acceptors and donors and host-guest binding. Crystallographic information: 1.6CH(3)COCH(3) is monoclinic, P2(1)/c, with a = 12.0890(2), b = 24.2982(2), and c = 12.8721(2) A, beta = 107.923(1) degrees, and Z = 2.  相似文献   

11.
Dipyrroles with a phenylene bridge, 1,4-bis(pyrrol-2-yl)benzene, 4-(1-vinylpyrrol-2-yl)-1-(pyrrol-2-yl)benzene, and 1,4-bis(1-vinylpyrrol-2-yl)benzene, show intense room-temperature fluorescence in solutions. Analysis of electronic absorption spectra, fluorescence spectra, and results of B3LYP, TD B3LYP, and CIS quantum chemical calculations showed that the introduction of a bulky substituent in position 1 of the pyrrole ring makes the ground-state structures of dipyrrolylbenzenes less planar. Excited-state geometries of all molecules relax to more planar conformations. An increase in the probability of nonradiative transitions has little effect on the quantum yields of fluorescence (Φf) of dipyrrolylbenzenes. Even for 1,4-bis(1-vinylpyrrol-2-yl)benzene, where the pyrrole rings deviate from the benzene ring plane by 44°, the fluorescence efficiency remains high enough (Φf = 0.7). Substitution at nitrogen atoms has little effect on positions of fluorescence band maxima. Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 7, pp. 1433–1438, July, 2008.  相似文献   

12.
The reaction of [AuTl(C(6)Cl(5))(2)](n) with bipy at different molar ratios, solvents or crystallisation conditions affords a series of two- and three-dimensional luminescent complexes, [AuTl(C(6)Cl(5))(2)(bipy)(0.5)](n), [AuTl(C(6)Cl(5))(2)(bipy)](n), [[Tl(bipy)][Tl(bipy)(0.5)(THF)][Au(C(6)Cl(5))(2)](2)](n), [[Tl(bipy)][Tl(bipy)(0.5)(THF)][Au(C(6)Cl(5))(2)](2)xTHF](n) and [[AuTl(C(6)Cl(5))(2)(bipy)]x0.5toluene](n)(bipy = 4,4'-bipyridine; THF = tetrahydrofuran) all of them containing polymeric chains formed via unsupported Au...Tl interactions and bridging bipyridine ligands.  相似文献   

13.
Two neodymium(III) complexes, [Nd(Phen)(NO3)3(DMF)2] (1) and [Nd(Phen)2(NO3)3] (2) (phen = 1,10-phenanthroline; DMF = dimethylformamide), have been synthesized with a view to design artificial luminescent nucleases and nuclease mimics. The complexes were characterized by spectroscopic, powder, and single crystal XRD studies. The complexes, as expected, have luminescent properties. The DNA binding studies of both complexes have been carried out by spectroscopic studies e.g. electronic absorption (UV–Vis), fluorescence emission as well as viscosity measurements. The nuclease activity of the complexes has been established by gel electrophoresis using pUC19 circular plasmid DNA. The results of DNA binding as well as DNA cleavage activity and the model studies of interaction with pNPP indicate that both neodymium complexes demonstrate nuclease activity through phosphoester bond cleavage.  相似文献   

14.
A series of new luminescent cyclometalated platinum(II) complexes functionalized with various substituted styryl groups on the cyclometallating ligand [Pt(C/\N-ppy-4-styryl-R)(O/\O-(O)CCR'CHCR'C(O))] (ppy-4-styryl-R = E-4(4-(R)styryl-2-phenylpyridine) (3, R' = Me (acac); 4, R' = (t)Bu (dpm); R = H, OMe, NEt2, NO2) have been prepared. All complexes undergo an E-Z photoisomerization process in CH2Cl2 solution under sunlight, as monitored by 1H NMR. The solid-state structures of 3-OMe, 3-NEt2, 3-NO2, and 4-OMe have been determined by X-ray diffraction studies and compare well with optimized geometries obtained by density functional theory (DFT) calculations. The orbital pictures of 3-H, 3-OMe, and 3-NO 2 are very similar, the highest occupied molecular orbital (HOMO) being highly Pt(5d) metal-based. For 3-NMe2, an additional contribution from the amino-styryl fragment leads to a decreased metal parentage of the HOMO, suggesting a predominantly ILCT character transition. Complexes 3-H, 3-OMe, and 3-NO2 show a low-energy band (350-400 nm) assigned to predominantly charge-transfer transitions. The amino derivative 3-NEt2 displays a very strong absorption band at 432 nm, tentatively assigned to a mixture of ILCT (Et2N --> CH=CH) and metal-to-ligand charge-transfer (MLCT) (dpi(Pt) --> pi) transitions. Complexes 3 are weakly luminescent in CH2Cl2 solution at room temperature; the low intensity may be due to a competitive quenching through the E-Z photoisomerization process. All complexes exhibit similar structured emission bands under these conditions (around 520 nm), independent of the nature of the styryl-R group. In a frozen EPA glass (77 K), the spectrum of the representative complex 3-H exhibits two sets of vibronically structured bands (460-560, 570-800 nm; lambda(max) = 596 nm), due to the presence of two emitting species, the E and Z isomers, which have significantly different triplet excited-state energies. The other three complexes show similar behavior to 3-H at 77 K, but the lower-energy emission bands are progressively red-shifted in the order H < OMe < NO2 < NEt2 (e.g., for 3-NEt2, lambda(max)(em) = 658 nm; tau = 26 micros). The very large red-shift compared to related unsubstituted complexes (e.g., to [Pt(C/\N-ppy)(O/\O-acac)]) is the result of the extension of the pi-conjugated system and the electronic effects of substituent R.  相似文献   

15.
Lo KK  Tsang KH  Hui WK  Zhu N 《Inorganic chemistry》2005,44(17):6100-6110
We report the synthesis, characterization, and photophysical and electrochemical properties of a series of luminescent rhenium(I) diimine indole complexes, [Re(N-N)(CO)3(L)](CF3SO3) (N-N = 3,4,7,8-tetramethyl-1,10-phenanthroline (Me4-phen), L = N-(3-pyridoyl)tryptamine (py-3-CONHC2H4-indole) (1a), N-[N-(3-pyridoyl)-6-aminohexanoyl]tryptamine, (py-3-CONHC5H10CONHC2H4-indole) (1b); N-N = 1,10-phenanthroline (phen), L = py-3-CONHC2H4-indole (2a), py-3-CONHC5H10CONHC2H4-indole (2b); N-N = 2,9-dimethyl-1,10-phenanthroline (Me2-phen), L = py-3-CONHC2H4-indole (3a), py-3-CONHC5H10CONHC2H4-indole (3b); N-N = 4,7-diphenyl-1,10-phenanthroline (Ph2-phen), L = py-3-CONHC2H4-indole (4a), py-3-CONHC5H10CONHC2H4-indole (4b)), and their indole-free counterparts, [Re(N-N)(CO)3(py-3-CONH-Et)](CF3SO3) (py-3-CONH-Et = N-ethyl-(3-pyridyl)formamide; N-N = Me4-phen (1c), phen (2c), Me2-phen (3c), Ph2-phen (4c)). The X-ray crystal structure of complex 3a has also been investigated. Upon irradiation, most of the complexes exhibited triplet metal-to-ligand charge-transfer (3MLCT) (d pi(Re) --> pi*(diimine)) emission in fluid solutions at 298 K and in low-temperature glass. However, the structural features and long emission lifetimes of the Me4-phen complexes in solutions at room temperature suggest that the excited state of these complexes exhibited substantial triplet intraligand (3IL) (pi --> pi*) (Me4-phen) character. The binding interactions of these complexes to indole-binding proteins including bovine serum albumin and tryptophanase have been examined.  相似文献   

16.
A series of metal-organic hybrid compounds were synthesized using two new phosphonic acids, pyridyl-4-phosphonic acid and p-xylylenediphosphonic acid (H(2)O(3)PCH(2)C(6)H(4)CH(2)PO(3)H(2)). The phosphonic acid ligands have been synthesized from their corresponding bromides following two different types of reactions. The reaction of pyridyl-4-phosphonic acid with three different divalent metal salts results in the formation of molecular structures of different dimensionality. The reaction of Cu(II) with the phosphonic acid under hydrothermal conditions yields a three-dimensional (3D) open framework structure having the molecular formula [Cu(4)(NC(5)H(4)-PO(3))(4)(H(2)O)(10)] (1). The reactions with Mn(II) and Zn(II) salts with the same phosphonic acid resulted in a two-dimensional layered and a dinuclear compound with molecular formulas [Mn(3)(NC(5)H(4)-PO(3))(4)(H(2)O)(6)(ClO(4))(2)] (2) and [Zn(2)(NHC(5)H(4)-PO(3)H)(2)Cl(4)] (3), respectively. Compound 1 crystallizes in the triclinic crystal system having space group P with structural parameters a = 7.4564(15) Angstrom, b = 9.1845(19) Angstrom, c = 11.582(2) Angstrom, alpha = 100.842(3) degrees, beta = 104.303(3) degrees, gamma = 94.774(3) degrees, and Z = 1. Compound 2 crystallizes in the triclinic crystal system, space group P, with structural parameters a = 7.6871(14) Angstrom, b = 10.576(2) Angstrom, c = 14.470(3)Angstrom, alpha = 81.340(3) degrees, beta = 81.561(3) degrees, gamma = 68.757(3) degrees, and Z = 2, whereas compound 3 crystallizes in a monoclinic crystal system with space group P2(1)/n. The structural parameters are as follows: a = 8.4969 (5) Angstrom, b = 9.3911 (5) Angstrom, c = 12.3779 (6) Angstrom, beta = 90.860(17) degrees, and Z = 4. The pyridylphosphonate ligand shows different ligation behavior toward the three divalent metal ions. On the other hand, p-xylylenediphosphonic acid on reaction with Co(II) formed a 3D compound [Co(2)(O(3)PCH(2)C(6)H(4)CH(2)PO(3))(2)(H(2)O)(2)] (4) with a layered and pillared structure. Compound 4 crystallizes in an orthorhombic crystal system with space group Pnma. The structural parameters are a = 21.744(4) Angstrom, b = 5.6744(10) Angstrom, c = 4.7927(9) Angstrom, and Z = 4.  相似文献   

17.
Novel siloxane tethered para divinylarene cyclophanes, containing phenyl, biphenyl and naphthalene rings as the aromatic nuclei, were prepared by the hydrolytic condensation of the corresponding bis{[dimethyl(i-propoxy)silyl]vinyl}arenes under basic conditions.The photophysics of the cyclophanes were investigated using UV and fluorescence spectroscopy.  相似文献   

18.
A novel copper(II) thiocyanate complex [Cu(im)2(NCS)2] 1 (im=imidazole) has been prepared and characterized by spectroscopic analysis and crystallographic method. This supramolecular compound exhibits a three-dimensional solid state structure constituted by N–HS hydrogen bonds and π–π stacking interactions. The compound in DMF solutions has a very strong third-order non-linear optical (NLO) behavior with absorption coefficient and refractive index 2=1.18×10−11 mw−1, n2=−9.00×10−16 m2w−1, respectively, and third-order NLO susceptibility χ(3) of 7.00×10−10 esu.  相似文献   

19.
Four metal complexes of N,N′-bis(salicyl)-2,6-pyridine-dicarbohydrazide ligand (H6L), [CoII(H4L)(H2O)2]·2DMF (1), [ZnII(H4L)(H2O)2]·2DMF (2), [CdII(H4L)(Py)2]·DMF·Py (3), and [CoIICo2III(H4L)4(H2O)4]·DMF·H2O (4), were synthesized and characterized by elemental analysis, IR, and single-crystal X-ray diffraction analysis. Structural studies revealed that complexes 13 present discrete mononuclear structures and complex 4 displays a centrosymmetric mixed-valence trinuclear structure. All four complexes are further extended into interesting two- or three-dimensional supramolecular frameworks. The luminescent properties of 2 and 3 were studied, which show emissions with maxima at 485 nm upon excitation at 396 nm for 2 and 476 nm upon excitation at 397 nm for 3, respectively.  相似文献   

20.
The surface hydrophobicity of colloidal silica (SiO2) nanospheres is manipulated by a chemical graft of alkyl chains with silane coupling agents or by physical adsorption of a cationic surfactant. The surface-modified SiO2 spheres can be transferred from the aqueous phase to organic solvents and readily self-assemble at the water-air interface to form two-dimensional (2D) particle arrays. Closely packed particle monolayers are obtained by adjusting the hydrophilic/hydrophobic balance of the synthesized SiO2 spheres and may further be transferred onto solid substrates layer by layer to form three-dimensional (3D) ordered particle arrays with a hexagonal close-packed (hcp) crystalline structure. The 2D monolayer and 3D multilayer SiO2 films exhibit photonic crystal properties, which were determined by the UV-visible spectroscopic analysis in transmission mode. In the multilayer films, the Bragg diffraction maxima increased with an increase in thickness of the particle layers. The experimentally observed diffraction positions are in good agreement with those that were theoretically calculated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号