首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
Two new, octadentate, water-soluble, macrocyclic ligands, 1,4,7,10-tetrakis((2S)-(-)-2-hydroxy-3-[3'-(N,N,N-trimethylammonium)-phenoxy]-propyl)-1,4,7,10-tetraazacyclododecane tetratriflate, ((S)-tmappc12 triflate, L1 triflate) and 1,4,7,10-tetrakis((2S)-(-)-2-hydroxy-3-[2'-sulfo-4'-methylphenoxy]-propyl)-1,4,7,10-tetraazacyclododecane, ((S)-sthmppc12, L2H4) have been prepared with a view to using them to study anion sequestration in aqueous solution. Their pKa and metal-ion binding constant values with a range of alkaline earth, transition, and post-transition metals are reported. The eight-coordinate, water-soluble Cd(II) complexes of (L1)4+ and (L2)4-, [CdL1](CF3SO3)6 and (NH4)2-[CdL2], the former cationic and the latter anionic, have both been shown to be capable of acting as anion receptors in aqueous solution. The binding constant values (log(K/M-1) given in parentheses) for binding by the cationic receptor to a range of aromatic anions in water are p-nitrophenolate (1.7), p-formylphenolate (2.1), p-nitrobenzoate (3.0), p-aminobenzoate (4.5), p-dimethylaminobenzoate (>4.5), D- and L-tryptophanate (1.6, 2.2), phenoxyacetate (2.1), and acetate (2.3). With the anionic receptor, nonzero binding constants were only measurable for p-nitrobenzoate (approximately 0.4), p-aminobenzoate (2.0), and p-dimethylaminobenzoate (1.8). By reference to the X-ray determined structures of related, but water-insoluble inclusion complexes, anion retention is thought to occur within a hydrophobic cavity, with four convergent hydroxy groups at its base, which develops in (L1)4+ and (L2)4- through the juxtapositioning of aromatic rings that occurs as a consequence of octadentate coordination.  相似文献   

2.
Complexation of the lanthanides Eu3+, Gd3+, and Tb3+ with 1,4,7,10-tetrakis(carboxymethyl)-1,4,7,10-tetraazacyclododecane (dota) has been studied in solution by using potentiometry, luminescence spectrometry, and EXAFS. Three series of successive complexes were characterized by at least two of these methods: the immediate [LnHn(dota)](n-1)+** and intermediate [LnHn(dota)](n-1)+* complexes with 0 相似文献   

3.
席海涛  王爱健  孙小强  张秀芹  陈强 《结构化学》2009,28(10):1210-1216
A novel molecule tetra-N-alkylation of cyclen (1,4,7,10-tetraazacyclododecane), 1,4,7,10-tetrakis(2-((4-hydroxy)phenoxy)ethyl)-1,4,7,10-tetraazacyclododecane 2, was synthesized and structurally characterized by single-crystal X-ray diffraction. The molecule turned into chiral helical compound crystals grown from EtOH by slow diffusion at room temperature and three of the four hydroquinone groups of the benzene ring formed a g-electron-rich cavity by C-H…π stacking interaction. The crystal belongs to the monoclinic system, space group P21/C with a = 13.9192(9), b = 13.2871(6), c = 22.1894(15)A^°, β = 91.4600(10)°, V = 4102.5(4)A^°3, Z = 4, Dc = 1.219 g/cm^3, C40H52N4O8, Mr = 752.89, F(000) = 1616,μ = 0.088 mm^-1, MoKa radiation (λ = 0.71073), R = 0.0578 and wR = 0.1389 for 5588 observed reflections with I 〉 2σ(I). Moreover, compound 2 was characterized with ^1H NMR, ^13C NMR, IR spectra and MS.  相似文献   

4.
The influence of rigid or semirigid dicarboxylate anions, terephtalate (TerP(2-)), isophtalate (IsoP(2-)), and phenylenediacetate (PDA(2-)) on the self-condensation process of the [Mo(2)O(2)S(2)](2+) dioxothio cation has been investigated. Three new molybdenum rings, [Mo(12)O(12)S(12)(OH)(12)(TerP)](2-) ([Mo(12)TerP](2-)), [Mo(16)O(16)S(16)(OH)(16)(H(2)O)(4)(PDA)(2)](4-) ([Mo(16)(PDA)(2)](4-)), and [Mo(16)O(16)S(16)(OH)(16)(H(2)O)(2)(IsoP)(2)](4-) ([Mo(16)(IsoP)(2)](4-)) have been isolated and unambiguously characterized in the solid state by single-crystal X-ray studies and in solution by various NMR methods and especially by diffusion-correlated NMR ((1)H DOSY) spectroscopy, which was shown to be a powerful tool for the characterization and speciation of templated molybdenum ring systems in solution. Characterization by FT-IR and elemental analysis are also reported. The dynamic and thermodynamic properties of both the sixteen-membered rings were studied in aqueous medium. Specific and distinct behaviors were revealed for each system. The IsoP(2-)/[Mo(2)O(2)S(2)](2+) system gave rise to equilibrium, involving mono-templated [Mo(12)IsoP](2-) and bis-templated [Mo(16)(IsoP)(2)](4-) ions. Thermodynamic parameters have been determined and showed that the driving-force for the formation of the [Mo(16)(IsoP)(2)](4-) is entropically governed. However, whatever the conditions (temperature, proportion of reactants), the PDA(2-)/[Mo(2)O(2)S(2)](2+) system led only to a single compound, the [Mo(16)(PDA)(2)](4-) ion. The latter exhibits dynamic behavior, consistent with the gliding of both the stacked aromatic groups. Stability and dynamics of both Mo(16) rings was related to weak hydrophobic or pi-pi stacking inter-template interactions and inner hydrogen-bond network occurring within the [Mo(16)(IsoP)(2)](4-) and [Mo(16)(PDA)(2)](4-) ions.  相似文献   

5.
Crystallization of [Cd(S‐thpc12)](ClO4)2·H2O {S‐thpc12 is 1,4,7,10‐tetrakis­[(S)‐2‐hydroxy­propyl]‐1,4,7,10‐tetra­aza­cyclo­do­decane} in the presence of two equivalents of sodium picrate monohydrate (sodium 2,4,6‐tri­nitro­phenolate monohydrate) diastereoselectively produces a neutral receptor complex, viz. the title compound, Λ‐[Cd(C20H44N4O4)](C6H2N3O7)2·CH3CN. In this complex, two picrate anions hydrogen bond, via their phenolate moieties, to the pendant hydroxyl groups of the receptor which, together with the four N atoms, themselves bond to CdII in an approximately cubic arrangement. One picrate anion hydrogen bonds to all four hydroxyl groups, one of which also acts as the sole hydrogen‐bond donor to the second picrate anion.  相似文献   

6.
The pK(a)s and Zn2+, Cd2+ and Cu2+ complexation constants (K) for 1,4,7-tris[(2'S)-acetamido-2'-(methyl-3'-phenylpropionate)]-1,4,7-triazacyclononane, 1, 1,4,7-tris[(2'S)-acetamido-2'-(1'-carboxy-3'-phenylpropane)]-1,4,7-triazacyclononane, H(3)2, 1,4,7-tris[(2'S)-acetamido-2'-(methyl-3'-(1H-3-indolyl)propionate)]-1,4,7-triazacyclononane, 3, and 1,4,7,10-tetrakis[(2'S)-acetamido-2'-(methyl-3'-phenylpropionate)]-1,4,7,10-tetraazacyclododecane, 4, 1,4,7,10-tetrakis[(2'S)-acetamido-2'-(1'-carboxy-3'-phenylpropane)]-1,4,7,10-tetraazacyclododecane, H(4)5, in 20 : 80 v/v water-methanol solution are reported. The pK(a)s within the potentiometric detection range for H(3)1(3+) = 8.69 and 3.59, for H(6)2(3+) = 9.06, 6.13, 4.93 and 4.52, H(3)3(3+) = 8.79 and 3.67, H(4)4(4+) = 8.50, 5.62 and 3.77 and for H(8)5(4+) = 9.89, 7.06, 5.53, 5.46, 4.44 and 4.26 where each tertiary amine nitrogen is protonated. The complexes of 1: [Zn(1)]2+(9.00), [Cd(1)]2+ (6.49), [Cd(H1)]3+ (4.54) and [Cu(1)]2+ (10.01) are characterized by the log(K/dm3 mol(-1)) values shown in parentheses. Analogous complexes are formed by 3 and 4: [Zn(3)]2+ (10.19), [Cd(3)]2+ (8.54), [Cu(3)]2+ (10.77), [Zn(4)]2+ (11.41) [Cd(4)]2+ (9.16), [Cd(H4)]3+ (6.16) and [Cu(4)]2+ (11.71). The tricarboxylic acid H(3)2 generates a greater variety of complexes as exemplified by: [Zn(2)-] (10.68) [Zn(H2)] (6.60) [Zn(H(2)2)+] (5.15), [Cd(2)](-) (4.99), [Cd(H2)] (4.64), [Cd(H2(2))]+ (3.99), [Cd(H(3)2)]2+ (3.55), [Cu(2)](-) (12.55) [Cu(H2)] (7.66), [Cu(H(2)2)]+ (5.54) and [Cu(2)2](4-) (3.23). The complexes of H(4)5 were insufficiently soluble to study in this way. The 1H and 13C NMR spectra of the ligands are consistent with formation of a predominant Zn2+ and Cd2+ Delta or Lambda diastereomer. The preparations of the new pendant arm macrocycles H(3)2, 3, 4 and H(4)5 are reported.  相似文献   

7.
Coordination of the [Mo(3)S(4)(H(2)O)(9)](4+) cluster with the trivacant [AsW(9)O(33)](9-) ion gives the supramolecular complex [{(H(4)AsW(9)O(33))(4)(Mo(3)S(4){H(2)O}(5))}(2)](12-) (1) in good yield. The structure of 1 shows that two [H(4)AsW(9)O(33)](5-) subunits sandwich a single central [Mo(3)S(4)(H(2)O)(5)](4+) ion to give a basic monomeric unit [(H(4)AsW(9)O(33))(2){Mo(3)S(4)(H(2)O)(5)}](6-). In the solid state, a supramolecular dimeric association is evidenced that consists of two [(H(4)AsW(9)O(33))(2){Mo(3)S(4)(H(2)O)(5)}](6-) units held together by twelve hydrogen bonds and four SS contacts. Complex 1 reacts with NaAsO(2), AgNO(3) and CuI to give compounds 2, 3 and 4, respectively. X-ray structural analysis reveals that the molecular arrangements of 2 to 4 are closely related to the parent structure of 1. {AsOH}(2+), Ag(+) and Cu(+) ions are located on three distinct pairs of sites. Two hanging {AsOH}(2+) groups in 2 are symmetrically attached to two opposite {AsW(9)O(33)} subunits. Complex 3 is the first example of an Ag/{Mo(3)S(4)} combination in which the environment of the two equivalent Ag(+) cations is remarkable for containing two sulfur atoms belonging to {Mo(3)S(4)}, two oxygen and one central arsenic atom of the {AsW(9)O(33)} subunits. Potentiometric titration shows that the addition of Ag(+) ions is quantitative and occurs in two successive steps (K(1)=4.1 x 10(6) and K(2)=2.3 x 10(5) L mol(-1)), which is consistent with the retention of the supramolecular cluster in solution. The structure of 4 reveals a single copper atom embedded in the central part of the dimer. The Cu(+) cation is bound to four sulfur atoms to complete a cuboidal moiety. UV/Vis studies in solution indicate that the stability of the dimeric assemblies of 2, 3 and 4 is significantly enhanced by the presence of Cu(+) or Ag(+) ions, which act as additional coordination linkers within the supramolecular cluster. The anions 1 to 4 were characterised by (183)W NMR spectroscopy in solution. The 10-line spectra recorded for each of them are consistent with an averaged C(2h) molecular symmetry in solution.  相似文献   

8.
The infrared spectra, elemental and thermal (TG/DTG and DTA) analyses of novel [Zn(cyclen-κ4N1,4,7,10)(HGly-κ2O,O')](ClO4)2 (1), and [Zn2(cyclen-κ4N1,4,7,10)2(μ-S-Ala-κ2N,O)](ClO4)(3)·2H2O (2) complexes (cyclen - 1,4,7,10-tetraazacyclododecane) were recorded and analyzed in the relation to their structural peculiarities. IR spectral data indicate both mono- or bidentate coordination mode of a carboxylate group in the prepared complexes (at pH≈9). The results indicate unusual bidentate carboxylate coordination mode (in complex (1)) toward to Zn2+-cyclen unit. Therefore the crystal structure determination of the crystalline complex [Zn(cyclen-κ4N1,4,7,10)(NO3-κ2O,O')](NO3) was attached in order to support the coordination mode assignment in complex (1).  相似文献   

9.
The reaction between Hmbpymca ligand (prepared in situ from the hydrolysis of 5-methyl-4-cyano-bispyrimidine with NaOH and further neutralization with 2 M HCl) and Mn(ClO(4))(2)·4H(2)O in 1:1 molar ratio afforded the triangulo-trimanganese(II) complex [Mn(3)(bpymca)(3)(H(2)O)(6)]Cl(3)·6H(2)O 1. The chloride anions in this complex come from the HCl used in the neutralization process. The molecular structure of 1 consists of cationic molecular triangles [Mn(3)(μ-mbpymca)(3)(H(2)O)(6)](3+) with C(3) symmetry, chloride anions and crystallization water molecules, all of them involved in an extensive network of hydrogen bonds, leading to a chiral network. Within the [Mn(3)(μ-mbpymca)(3)(H(2)O)(6)](3+) cations, seven-coordinated Mn(II) ions are bridged by both oxygen atoms of the carboxylate groups and exhibit a MnO(5)N(2) compressed pentagonal bipyramidal coordination environment. The temperature dependence of the magnetic susceptibility shows the presence of weak antiferromagnetic interactions between Mn(II) ions mediated by the carboxylate group of the mbpymca ligand and the existence of a 3D antiferromagnetic ordering below 4 K, which has its origin in the AF inter-trimer exchange interactions mediated by the strong hydrogen bonds present in the crystal of 1. The experimental magnetic susceptibility data above 7 K could be satisfactorily fitted to the theoretical analytical expression derived from the spin Hamiltonian H = -J(S(1)S(2) + S(1)S(3) + S(2)S(3)) with J = -0.782(3) cm(-1) and g = 2.092(3). The model predicts a degenerate ground state with an S = 1/2, which is typical of triangular trimetallic spin frustrated systems containing metal with non-integer spins. DFT calculations were performed on the molecular structure as found in the solid state to support the experimental J value and the Mn-O(carb)-Mn as the primarily exchange pathway.  相似文献   

10.
Iron(II) complexes of the macrocyclic ligands 1,4,7,10-tetrakis(carbamoylmethyl)-1,4,7,10-tetraazacyclododecane (TCMC) and (1S,4S,7S,10S)-1,4,7,10-tetrakis(2-hydroxypropyl)-1,4,7,10-tetraazacyclododecane (STHP) contain a highly stabilized Fe(II) center in the high-spin state, which is encapsulated by an octadentate macrocycle. The complexes are resistant to acid, metal cations, phosphate, carbonate, and oxygen in aqueous solution. [Fe(TCMC)](2+) contains exchangeable amide protons, and [Fe(STHP)](2+) contains exchangeable protons attributed to alcohol OH donors, which give chemical exchange saturation transfer (CEST) peaks at physiological pH and 37 °C at 50 and 54 ppm from bulk water, respectively. The distinct pH dependence of the CEST peak of the two complexes over the range of pH 6-8 shows that these two groups may be useful in the development of ratiometric pH sensors based on iron(II).  相似文献   

11.
Aromatic ring amination reactions in the ruthenium complex of 2-(phenylazo)pyridine is described. The substitutionally inert cationic brown complex [Ru(pap)(3)](ClO(4))(2) (1) (pap = 2-(phenylazo)pyridine) reacts smoothly with aromatic amines neat and in the presence of air to produce cationic and intense blue complexes [Ru(HL(2))(3)](ClO(4))(2) (2) (HL(2) = 2-[(4-(arylamino)phenyl)azo]pyridine). These were purified on a preparative TLC plate. The X-ray structure of the new and representative complex 2c has been solved to characterize them. The results are compared with those of the starting complex, [Ru(pap)(3)](ClO(4))(2) (1). The transformation 1 --> 2 involves aromatic ring amination at the para carbon (with respect to the diazo function) of the pendant phenyl rings of all three coordinated pap ligands in 1. The transformation is stereoretentive, and the amination reaction is regioselective. The extended ligand HL(2) coordinates as a bidentate ligand and chelates to ruthenium(II) through the pyridine and one of the azo nitrogens. The amine nitrogen of this bears a hydrogen atom and remains uncoordinated. Similarly, the amination reaction on the mixed-ligand complex [Ru(pap)(bpy)(2)](ClO(4))(2) produces the blue complex [Ru(HL(2))(bpy)(2)](ClO(4))(2) (3) as anticipated. The reactions of [RuCl(2)(dmso)(4)] and [Ru(S)(2)(L)(2)](2+) (dmso = dimethyl sulfoxide, S = labile coordinated solvent, L = 2,2'-bipyridine (bpy) and pap) with the preformed HL(2) ligand have been explored. The structure of the representative complex [RuCl(2)(HL(2a))(2)] (5a) is reported. It has the chlorides in trans configuration while the pyridine as well as azo nitrogens are in cis geometry. Optical spectra and redox properties of the newly synthesized complexes are reported. All the ruthenium complexes of HL(2) are characterized by their intense blue solution colors. The lowest energy transitions in these complexes appear near 600 nm, which have been attributed to intraligand charge-transfer transitions. For example, the lowest energy visible range transition in [Ru(HL(2b))(3)](2+) appears at 602 nm and its intensity is 65 510 M(-1) cm(-1). All the tris chelates show multiple-step electron-transfer processes. In [Ru(HL(2))(3)](2+), six reductions waves constitute the complete electron-transfer series. The electrons are believed to be added successively to the three azo functions. In the mixed-ligand chelates [Ru(HL(2))(pap)(2)](2+) and [Ru(HL(2))(bpy)(2)](2+) the reductions due to HL(2), pap, and bpy are observed.  相似文献   

12.
rac- and Lambda-tris(ethylenediamine)cobalt(III) cyclotriphosphate dihydrate with the chemical formulas rac-[Co(en)(3)]P(3)O(9).2H(2)O (1) and Lambda-[Co(en)(3)]P(3)O(9).2H(2)O (2) were synthesized, and their crystal structures were determined by single-crystal X-ray analyses. In 1, the cationic complex molecule [Co(en)(3)](3+) with the Delta or Lambda enantiomer and cyclotriphosphate anion are alternately arrayed and connected by multiple hydrogen bonds to form a homochiral column structure. Adjacent homochiral columns with different chirality for 1 are connected by intercolumn hydrogen bonds through P(3)O(9)(3)(-) anions, as the bridging groups, to form a tetrameric cyclic cylindrical structure, while the adjacent columns with the same chirality are connected for 2 to form the cyclic cylindrical structure. All 6 amino groups per [Co(en)(3)](3+) participate in the formation of 12 hydrogen bonds, in which 8 hydrogen bonds contribute to the construction of a homochiral column and the remaining 4 hydrogen bonds contribute to the intercolumn interactions. The circular dichroism spectrum of the aqueous solution of Lambda-[Co(en)(3)](3+) changes drastically when excess P(3)O(9)(3)(-) is added, and this change is explained by ion-pair formation. The thermodynamic association constant of [Co(en)(3)](3+) with P(3)O(9)(3)(-), calculated from the conductivity data, was log K = 4.26 at 25 degrees C.  相似文献   

13.
Li X  Liu W  Guo Z  Tan M 《Inorganic chemistry》2003,42(26):8735-8738
Lanthanide nitrate complexes with the heptadentate ligand L (6-[2-(2-(diethylamino)-2-oxoethoxy)ethyl]-N,N,12-triethyl-11-oxo-3,9-dioxa-6,12-diazatetradecanamide), [Ln(2)L(NO(3))(6)] (Ln = La, Nd, Sm, Eu, Ho), have been prepared and characterized. The X-ray crystallographic studies show that, in [La(2)L(NO(3))(6)(H(2)O)].H(2)O (1), two complex cations [LaL(H(2)O)](3+) are linked by a hexanitrato anion [La(NO(3))(6)](3)(-) and form a trinuclear cation. In [Nd(2)L(NO(3))(6)(H(2)O)].CHCl(3).1/2CH(3)OH.1/2H(2)O (2), one complex cation [NdL(H(2)O)](3+) and a hexanitrato complex anion [Nd(NO(3))(6)](3)(-) are linked by a bridging NO(3)(-) to form a dinuclear complex. In both complexes, the bridging nitrate is an unusual tetradentate ligand. The metal ions are 12-coordinated in hexanitrato anions and 10-coordinated in complex cations. The chainlike supramolecular structures of La(3+) complex are parallel and have no hydrogen bonds in between, while, in the Nd(3+) complex, a chiral cavity is formed by hydrogen bonds between two adjacent supramolecular chains. These influences are further investigated by assessing the separation efficiency of L and (1)H NMR spectra of its lanthanide nitrate mixtures in solution.  相似文献   

14.
Jancik V  Roesky HW 《Inorganic chemistry》2005,44(16):5556-5558
Deprotonation of an Al-SH moiety has been achieved easily by using N-heterocyclic carbene as the base. Monomeric mono- and bis-imidazolium salts [C(t)H(+)][LAl(SH)(S)](-) ([C(t)H(+)] = N,N'-bis-tert-butylimidazolium), [C(m)H(+)][LAl(SH)(S)](-), and [C(m)H(+)](2)[LAl(S)(2)](2-) ([C(m)H(+)] = N,N'-bismesitylimidazolium), containing unusual anions [LAl(SH)(S)](-) and [LAl(S)(2)](2-), have been synthesized in nearly quantitative yields. Furthermore, [C(m)H(+)](2)[LAl(S)(2)](2-) has been successfully used for the preparation of LAl(SSiMe(2))(2)O containing the [O(Me(2)SiS)(2)](2-) ligand.  相似文献   

15.
The bis(benzene-o-dithiol) ligands H(4)-1, H(4)-2, and H(4)-3 react with [Ti(OC(2)H(5))(4)] to give dinuclear triple-stranded helicates [Ti(2)L(3)](4)(-) (L = 1(4)(-), 2(4)(-), 3(4)(-)). NMR spectroscopic investigations revealed that the complex anions possess C(3) symmetry in solution. A crystal structure analysis for (PNP)(4)[Ti(2)(2)(3)] ((PNP)(4)[14]) confirmed the C(3) symmetry for the complex anion in the solid state. The complex anion in Li(PNP)(3)[Ti(2)(1)(3)] (Li(PNP)(3)[13]) does not exhibit C(3) symmetry in the solid state due to the formation of polymeric chains of lithium bridged complex anions. Complexes [13](4)(-) and [14](4)(-) were obtained as racemic mixtures of the Delta,Delta and Lambda,Lambda isomers. In contrast to that, complex (PNP)(4)[Ti(2)(3)(3)] ((PNP)(4)[15]) with the enantiomerically pure chiral ligand 3(4)(-) shows a strong Cotton effect in the CD spectrum, indicating that the chirality of the ligands leads to the formation of chiral metal centers. The o-phenylene diamine bridged bis(benzene-o-dithiol) ligand H(4)-4 reacts with Ti(4+) to give the dinuclear double-stranded complex Li(2)[Ti(2)(4)(2)(mu-OCH(3))(2)] containing two bridging methoxy ligands between the metal centers. The crystal structure analysis and the (1)H NMR spectrum of (Ph(4)As)(2)[Ti(2)(4)(2)(mu-OCH(3))(2)] ((Ph(4)As)(2)[(16]) reveal C(2) symmetry for the anion [Ti(2)(4)(2)(mu-OCH(3))(2)](2)(-). For a comparative study the dicatechol ligand H(4)-5, containing the same o-phenylene diamine bridging group as the bis(benzene-o-dithiol) ligands H(4)-4, was prepared and reacted with [TiO(acac)(2)] to give the dinuclear complex anion [Ti(2)(5)(2)(mu-OCH(3))(2)](2)(-). The molecular structure of (PNP)(2)[Ti(2)(5)(2)(mu-OCH(3))(2)] ((PNP)(2)[17]) contains a complex anion which is similar to [16](2)(-), with the exception that strong N-H...O hydrogen bonds are formed in complex anion [17](2)(-), while N-H...S hydrogen bonds are absent in complex anion [16](2)(-).  相似文献   

16.
A 1:1 mixture of a tris(Zn(II)-cyclen) (1: [Zn(3)L(1)], L(1)=1,3,5-tris(1,4,7,10-tetraazacyclododecan-1-ylmethyl)benzene) and trithiocyanuric acid (TCA) yielded a 4:4 self-assembly complex [(Zn(3)L(1))(4)-(TCA(3-))(4)] (6) through the formation of Zn(II)-S(-) coordination bonds and hydrogen bonds between 1,3,5-triazine N and cyclen NH (cyclen=1,4,7,10-tetraazacyclododecane); the supramolecular capsule structure was revealed by X-ray crystal structure analysis. The capsule exterior represents a twisted cuboctahedral framework containing a nanoscale truncated tetrahedral cavity. The crystal data: formula C(144)H(308)N(72)O(58)S(12)Zn(12) (6[NO(3)](12) x 22 H(2)O), M(r)=5145.75, cubic, space group F432 (No. 209), a=39.182(1) A, V=60153(3) A (3), Z=8, R=0.100, R(w)=0.259. Lipophilic organic molecules with the matching sizes, for example, ([D(4)]-2,2,3,3)-3-(trimethylsilyl)propionic acid (TSP), 1-adamantanecarboxylic acid, 2,4-dinitrophenol (2,4-DNP), adamantane (ADM), or the tetra-n-propylammonium (TPA) cation, are encapsulated in the inner cavity, as revealed by remarkable upfield shifts of the (1)H NMR signals of these guest molecules. The encapsulation of ADM was confirmed by X-ray crystal structure analysis. Crystal data of the ADM-encapsulating complex: formula C(154)H(334)N(72)O(63)S(12)Zn(12) (6-ADM[NO(3)](12) x 27 H(2)O), M(r)=5372.06, cubic, space group F432 (No. 209), a=39.061(1) A, V=59599(3) A(3), Z=8, R=0.103, R(w)=0.263. The 4:4 self-assembly was stabilized by incorporation of one of these guest molecules. The apparent 4:4 self-assembly constants for 6 in the presence of an excess amount of a guest TPA, log K(app) (K(app)=[6-TPA]/[1](4)[TCA](4)) (M(-7))), were determined to be 34.0+/-2.0 and 35.5+/-3.0 by potentiometric pH and UV spectrophotometric titrations, respectively. An apparent encapsulation constant for 2,4-DNP, log K(enc) (K(enc)=[6-2,4-DNP]/[6][2,4-DNP] (M(-1))), was 6.0+/-0.1 at pH 7.0 (50 mM HEPES with I=0.1 (NaNO(3))), as determined by UV titrations. The lipophilicity of the inner cavity was close to that of 2-propanol, as a quantum yield (phi) of 0.24+/-0.1 for the fluorescent emission of 7-diethylaminocoumarin-1-carboxylic acid (20 microM) in the capsule was close to the phi of 0.22 found for 2-propanol. Encapsulation properties of the present Zn(II)-containing cage have been compared with those of cyclodextrins and Fujita's Pd(II)-containing supramolecular cage. The exterior chirality of the 4:4 complex was controlled from within by an encapsulated chiral guest molecule, 2,10-camphorsultam, as indicated by Cotton effects in the circular dichroism spectra.  相似文献   

17.
The use of 1,3,5-triaminocyclohexane (tach) as a capping ligand in generating metal-cyanide cage clusters with accessible cavities is demonstrated. The precursor complexes [(tach)M(CN)(3)] (M = Cr, Fe, Co) are synthesized by methods similar to those employed in preparing the analogous 1,4,7-triazacyclononane (tacn) complexes. Along with [(tach)Fe(CN)(3)](1)(-), the latter two species are found to adopt low-spin electron configurations. Assembly reactions between [(tach)M(CN)(3)] (M = Fe, Co) and [M'(H(2)O)(6)](2+) (M' = Ni, Co) in aqueous solution afford the clusters [(tach)(4)(H(2)O)(12)Ni(4)Co(4)(CN)(12)](8+), [(tach)(4)(H(2)O)(12)Co(8)(CN)(12)](8+), and [(tach)(4)(H(2)O)(12)Ni(4)Fe(4)(CN)(12)](8+), each possessing a cubic arrangement of eight metal ions linked through edge-spanning cyanide bridges. This geometry is stabilized by hydrogen-bonding interactions between tach and water ligands through an intervening solvate water molecule or bromide counteranion. The magnetic behavior of the Ni(4)Fe(4) cluster indicates weak ferromagnetic coupling (J = 5.5 cm(-)(1)) between the Ni(II) and Fe(III) centers, leading to an S = 6 ground state. Solutions containing [(tach)Fe(CN)(3)] and a large excess of [Ni(H(2)O)(6)](2+) instead yield a trigonal pyramidal [(tach)(H(2)O)(15)Ni(3)Fe(CN)(3)](6+) cluster, in which even weaker ferromagnetic coupling (J = 1.2 cm(-)(1)) gives rise to an S = (7)/(2) ground state. Paralleling reactions previously performed with [(Me(3)tacn)Cr(CN)(3)], [(tach)Cr(CN)(3)] reacts with [Ni(H(2)O)(6)](2+) in aqueous solution to produce [(tach)(8)Cr(8)Ni(6)(CN)(24)](12+), featuring a structure based on a cube of Cr(III) ions with each face centered by a square planar [Ni(CN)(4)](2)(-) unit. The metal-cyanide cage differs somewhat from that of the analogous Me(3)tacn-ligated cluster, however, in that it is distorted via compression along a body diagonal of the cube. Additionally, the compact tach capping ligands do not hinder access to the sizable interior cavity of the molecule, permitting host-guest chemistry. Mass spectrometry experiments indicate a 1:1 association of the intact cluster with tetrahydrofuran (THF) in aqueous solution, and a crystal structure shows the THF molecule to be suspended in the middle of the cluster cavity. Addition of THF to an aqueous solution containing [(tach)Co(CN)(3)] and [Cu(H(2)O)(6)](2+) templates the formation of a closely related cluster, [(tach)(8)(H(2)O)(6)Cu(6)Co(8)(CN)(24) superset THF](12+), in which paramagnetic Cu(II) ions with square pyramidal coordination are situated on the face-centering sites. Reactions intended to produce the cubic [(tach)(4)(H(2)O)(12)Co(8)(CN)(12)](8+) cluster frequently led to an isomeric two-dimensional framework, [(tach)(H(2)O)(3)Co(2)(CN)(3)](2+), exhibiting mer rather than fac stereochemistry at the [Co(H(2)O)(3)](2+) subunits. Attempts to assemble larger edge-bridged cubic clusters by reacting [(tach)Cr(CN)(3)] with [Ni(cyclam)](2+) (cyclam = 1,4,8,11-tetraazacyclotetradecane) complexes instead generated extended one- or two-dimensional solids. The magnetic properties of one of these solids, two-dimensional [(tach)(2)(cyclam)(3)Ni(3)Cr(2)(CN)(6)]I(2), suggest metamagnetic behavior, with ferromagnetic intralayer coupling and weak antiferromagnetic interactions between layers.  相似文献   

18.
Cui Y  Niu YL  Cao ML  Wang K  Mo HJ  Zhong YR  Ye BH 《Inorganic chemistry》2008,47(13):5616-5624
A ruthenium(II) complex [Ru(bpy) 2(H 2bbim)](PF 6) 2 ( 1) as anions receptor has been exploited, where Ru(II)-bpy moiety acts as a chromophore and the H 2bbim ligand as an anion binding site. A systematic study suggests that 1 interacts with the Cl (-), Br (-), I (-), NO 3 (-), HSO 4 (-), and H 2PO 4 (-) anions via the formation of hydrogen bonds. Whereas 1 undergoes a stepwise process with the addition of F (-) and OAc (-) anions: formation of the monodeprotonated complex [Ru(bpy) 2(Hbbim)] with a low anion concentration, followed by the double-deprotonated complex [Ru(bpy) 2(bbim)], in the presence of a high anion concentration. These stepwise processes concomitant with the changes of vivid colors from yellow to orange brown and then to violet can be used for probing the F (-) and OAc (-) anions by naked eye. The deprotonation processes are not only determined by the basicity of the anion but also related to the strength of hydrogen bonding, as well as the stability of the formed compounds. Moreover, a double-deprotonated complex [Ru(bpy) 2(bbim)].CH 3OH.H 2O ( 3) has been synthesized, and the structural changes induced by the deprotonation has also been investigated. In addition, complexes [Ru(bpy) 2(Hbbim)] 2(HOAc) 3Cl 2.12H 2O ( 2), [Ru(bpy) 2(Hbbim)](HCCl 3CO 2)(CCl 3CO 2).2H 2O ( 4), and [Ru(bpy) 2(H 2bbim)](CF 3CO 2) 2.4H 2O ( 5) have been synthesized to observe the second sphere coordination between the Ru(II)-H 2bbim moiety and carboxylate groups via hydrogen bonds in the solid state.  相似文献   

19.
Initial attempts to prepare new Ln-Cd-Te-O-Cl compounds led to the isolation of two novel cadmium tellurium(IV) oxychlorides with two different types of structures, namely, [Cd(2)(Te(6)O(13))][Cd(2)Cl(6)] and Cd(7)Cl(8)(Te(7)O(17)). Both compounds feature novel polymeric tellurium(IV) oxide anions and unusual cadmium chloride substructures. The structure of [Cd(2)(Te(6)O(13))][Cd(2)Cl(6)] is composed of 1D [Cd(2)Cl(6)](2)(-) double chains and (002) [Cd(2)(Te(6)O(13))](2+) layers. The 1D Te(6)O(13)(2)(-) slab of the [Cd(2)(Te(6)O(13))](2+) layer is formed by TeO(3), TeO(4), and TeO(5) groups via corner- and edge-sharing, and it contains six- and seven-membered tellurium(IV) polyhedral rings. The structure of Cd(7)Cl(8)(Te(7)O(17)) features a 3D network with long-narrow tunnels along the b axis. The two types of structural building blocks are 1D [Te(7)O(17)](6)(-) anions and unusual corrugated [Cd(7)Cl(8)](6+) layers based on "cyclohexane-like" Cd(3)Cl(3) rings.  相似文献   

20.
The interactions of CrO(4) (2-) and Cr(3+) with nucleosides studied by electrospray ionization mass spectrometry (ESI-MS) are reported. In water, the nucleosides which do not contain the NH(2) group form the unstable [M+HCrO(4)](-) anion. In the presence of a reducing agent, namely methanol, chromate anion forms stable complexes with nucleosides, [M+CH(3)CrO(4)](-) anions. The fragmentation of [M+CH(3)CrO(4)](-) anions involve elimination of the methanol molecule. Chromium cation-nucleoside complexes were not observed in water. In methanol solutions, adenosine and cytidine form [(M-H)+CrOCH(3)](+) and [(M-H)(2)+Cr](+) ions. Most probably, deprotonated imine tautomers form complexes in which a metal cation is simultaneously coordinated by two nitrogen atoms. Complexes containing chloride anions and a few methanol molecules were observed for other nucleosides. Guanosine and inosine form doubly charged ions of the type [M(2)+CrOCH(3)](2+) that probably contain a bond between the oxygen atom and the chromium cation, (HN(1)--C(6)==O)(2) (....)Cr(3+)).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号