首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The isocyanide ligand forms complexes with ruthenium(II) bis-bipyridine of the type [Ru(bpy)(2)(CNx)Cl](CF(3)SO(3)) (1), [Ru(bpy)(2)(CNx)(py)](PF(6))(2) (2), and [Ru(bpy)(2)(CNx)(2)](PF(6))(2) (3) (bpy = 2,2'-bipyridine, py = pyridine, and CNx = 2,6-dimethylphenylisocyanide). The redox potentials shift positively as the number of CNx ligands increases. The metal-to-ligand charge-transfer (MLCT) bands of the complexes are located at higher energy than 450 nm and blue shift in proportion to the number of CNx ligands. The complexes are not emissive at room temperature but exhibit intense structured emission bands at 77 K with emission lifetimes as high as 25 micros. Geometry optimization of the complexes in the singlet ground and lowest-lying triplet states performed using density functional theory (DFT) provides information about the orbital heritage and correlates with X-ray and electrochemical results. The lowest-lying triplet-state energies correlate well with the 77 K emission energies for the three complexes. Singlet excited states calculated in ethanol using time-dependent density functional theory (TDDFT) and the conductor-like polarizable continuum model (CPCM) provide information that correlates favorably with the experimental absorption spectra in ethanol.  相似文献   

2.
The reaction between Ru(bpy)(2)Cl(2) (bpy=2,2'-bipyridine) and di-2-pyridylketone-p-nitrophenylhydrazone (dpknph) in refluxing ethanol gave [Ru(bpy)(2)(dpknph)]Cl(2) in good yield. Optical measurements on [Ru(bpy)(2)(dpknph)]Cl(2) in non-aqueous media revealed the presence of two interlocked electronic states due to conformational changes associated with the hydrazone moiety of [Ru(bpy)(2)(dpknph)]Cl(2). The equilibrium distribution of the high-energy beta-conformation associated with the high-energy electronic state and the low-energy alpha-conformation associated with the low-energy electronic state is solvent and solute dependent controlled by the solvent-solute and solute-solute interactions. The interplay between the alpha- and beta-conformations of [Ru(bpy)(2)(dpknph)]Cl(2) allowed calculations of the extinction coefficients of electronic states by forcing the equilibrium to shift to one conformation using chemical stimuli. Extinction coefficients of 56000+/-2000 and 48500+/-2000 M(-1) cm(-1) were calculated in DMSO for the beta- and alpha-conformations of [Ru(bpy)(2)(dpknph)]Cl(2), respectively, using excess HgCl(2) in DMSO. Thermo-optical measurements on [Ru(bpy)(2)(dpknph)]Cl(2) in DMSO confirmed the interconversion between the alpha- and beta-conformations of [Ru(bpy)(2)(dpknph)]Cl(2) and gave changes in enthalpy (DeltaH(?)) of -35.5+/-4.0 and 13.0+/-0.5 kJ mol(-1), entropy (DeltaS(?)) of -126.9+/-20 and 45.2+/-4.5 kJ mol(-1), and free energy (DeltaG(?)) of 2.31+/-0.2 and -0.48+/-0.2 kJ mol(-1) in the absence and presence of NaBH(4) at 295 K. The high values for the extinction coefficients and low values and sensitivity of the activation parameters for the interconversion between the alpha- and beta-conformations of [Ru(bpy)(2)(dpknph)]Cl(2) in DMSO to solution composition allowed for the use of this system ([Ru(bpy)(2)(dpknph)]Cl(2) and surrounding solvent or solute molecules) as a spectrophotometric sensor for a variety of chemical stimuli that include metal ions. Group 12 metal ions in concentrations as low as 1.00x10(-8) M can be detected and determined using [Ru(bpy)(2)(dpknph)]Cl(2) in DMSO in the presence and absence of NaBH(4).  相似文献   

3.
A facile reaction of cis-trans-cis-RuCl(2)(RaaiR')(2) [RaaiR'=1-alkyl-2-(arylazo)imidazole, m-R-C(6)H(4)-NN-C(3)H(2)-NN-1-R', where R=H (a), OMe (b), NO(2) (c) and R'=Me (1), Et (2) and CH(2)Ph (3)] either with 2,2'-bipyridine (bpy) and AgNO(3) followed by NaClO(4) or [Ag(bpy)(2)](ClO(4)) in boiling acetone has isolated red-brown [Ru(bpy)(RaaiR')(2)](ClO(4))(2) (1a-c, 2a-c, 3a-c). The maximum molecular peak of [Ru(bpy)(OMeaaiMe)(2)](ClO(4))(2) (1b) is observed at m/z 888.01 (100%) in the FAB mass spectrum. IR spectra of the complexes show CN and NN stretching at 1590 and 1370cm(-1) which is red shifted by 40 and 90cm(-1) from the free ligand value supports Ru-azo nitrogen pi bonding interaction. The emission spectra in frozen glass (77K) are sharper and considerably more intense than the room temperature spectra. The (1)H NMR spectral measurements suggest methylene, -CH(2)-, in RaaiEt gives a complex AB type multiplet while in RaaiCH(2)Ph it shows AB type quartets. Considering two arylazoimidazole moieties there are 20 different carbon atoms in the molecule which gives a total of 20 different peaks in the (13)C NMR spectrum. In the (1)H-(1)H COSY spectrum of the present complexes, absence of any off-diagonal peaks extending from delta=14.12 and 9.55ppm confirm their assignment of no proton on N(1) and N(3), respectively. Contour peaks in the (1)H-(13)C HMQC spectrum in the present complexes, the absence of any contours at delta=147.12, 160.76, 155.67 and 157.68 ppm assign them to the C(2), C(6), C(8) and C(e and e') carbon atoms, respectively. Cyclic voltammogram shows Ru(III)/Ru(II) redox couple along with three successive ligand reductions. The plot of difference in potential of first oxidation and reduction versus energy of main MLCT band (nu(CT)) is linear. Electrochemical parametrisation of Ru(III)/Ru(II) redox couple determines ligand potential E(L)(L).  相似文献   

4.
The synthesis and characterization of new Ru(II) and Os(II) complexes of the ligand eilatin (1) are described. The new complexes [Ru(bpy)(eil)(2)](2+) (2), [Ru(eil)(3)](2+) (3), and [Os(eil)(3)](2+) (4) (bpy = 2,2'-bipyridine; eil = eilatin) were synthesized and characterized by NMR, fast atom bombardment mass spectrometry, and elemental analysis. In the series of complexes [Ru(bpy)(x)(eil)(y)()](2+) (x + y = 3), the effect of sequential substitution of eil for bpy on the electrochemical and photophysical properties was examined. The absorption spectra of the complexes exhibit several bpy- and eil-associated pi-pi and metal-to-ligand charge-transfer (MLCT) transitions in the visible region (400-600 nm), whose energy and relative intensity depend on the number of ligands bound to the metal center (x and y). On going from [Ru(bpy)(2)(eil)](2+) (5) to 2 to 3, the d(pi)(Ru) --> pi(eil) MLCT transition undergoes a red shift from 583 to 591 to 599 nm, respectively. Electrochemical measurements performed in dimethyl sulfoxide reveal several ligand-based reduction processes, where each eil ligand can accept up to two electrons at potentials that are significantly anodically shifted (by ca. 1 V) with respect to the bpy ligands. The complexes exhibit near-IR emission (900-1100 nm) of typical (3)MLCT character, both at room temperature and at 77 K. Along the series 5, 2, and 3, upon substitution of eil for bpy, the emission maxima undergo a blue shift and the quantum yields and lifetimes increase. The radiative and nonradiative processes that contribute to deactivation of the excited level are discussed in detail.  相似文献   

5.
Emission and absorbance spectra, along with low-temperature excited-state lifetimes, were obtained for the hemilabile complexes, [Ru(bpy)2L](PF6)2 [L = (2-methoxyphenyl)diphenylphosphine (RuPOMe) (1) and (2-ethoxyphenyl)diphenylphosphine (RuPOEt) (2)] in solid 4:1 ethanol/methanol solution. Spectral data were evaluated with ground-state reduction potentials using Lever parameters. Lifetime data for these complexes were collected from 77 to 160 K, and the rate constant for the combined radiative and nonradiative decay process, k, the thermally activated process prefactor, k'(0), the rate constant for the MLCT --> d-d transition, k', and the activation energy, DeltaE', were calculated from a plot of ln(1/tau) versus 1/T for both (1) and (2). The low-temperature luminescence lifetimes of (1) were observed to decrease with increases in water concentration. The photophysical and kinetic data of (1) and (2) are compared to literature data for [Ru(bpy)3](PF6)2. The emission maxima of (1) and (2) are blue-shifted relative to [Ru(bpy)3](PF6)2 due to the presence of the strong-field phosphine ligand, which enhances pi back-bonding to the bipyridyl ligands. The thermal activation energy, DeltaE', is significantly larger for [Ru(bpy)3](PF6)2 than for (1) and (2) resulting in a faster MLCT --> d-d transition for (1) and (2). These results are discussed in the context of radiationless decay through thermally activated ligand-field states on the metal complex.  相似文献   

6.
Three new tetrathiafulvalene-substituted 2,2'-bipyridine ligands, cis-bpy-TTF(1), trans-bpy-TTF(1), and cis-bpy-TTF(2) have been prepared and characterized. X-ray analysis of trans-bpy-TTF(1) is also reported. Such ligands have been used to prepare two new trinuclear Ru(II) complexes, namely, [[(bpy)(2)Ru(micro-2,3-dpp)](2)Ru(bpy-TTF(1))](PF(6))(6) (9; bpy=2,2'-bipyridine; 2,3-dpp=2,3-bis(2'-pyridyl)pyrazine) and [[(bpy)(2)Ru(micro-2,3-dpp)](2)Ru(bpy-TTF(2))](PF(6))(6) (10). These compounds can be viewed as coupled antennas and charge-separation systems, in which the multichromophoric trinuclear metal subunits act as light-harvesting antennas and the tetrathiafulvalene electron donors can induce charge separation. The absorption spectra, redox behavior, and luminescence properties (both at room temperature in acetonitrile and at 77 K in a rigid matrix of butyronitrile) of the trinuclear metal complexes have been studied. For the sake of completeness, the mononuclear compounds [(bpy)(2)Ru(bpy-TTF(1))](PF(6))(2) (7) and [(bpy)(2)Ru(bpy-TTF(2))](PF(6))(2) (8) were also synthesized and studied. The properties of the tetrathiafulvalene-containing species were compared to those of the model compounds [Ru(bpy)(2)(4,4'-Mebpy)](2+) (4,4'-Mebpy=4,4'-dimethyl-2,2'-bipyridine) and [[(bpy)(2)Ru(micro-2,3-dpp)](2)Ru(bpy)](6+). The absorption spectra and redox behavior of all the new metal compounds can be interpreted by a multicomponent approach, in which specific absorption features and redox processes can be assigned to specific subunits of the structures. The luminescence properties of the complexes in rigid matrices at 77 K are very similar to those of the corresponding model compounds without TTF moieties, whereas the new species are nonluminescent, or exhibit very weak emissions relative to those of the model compounds in fluid solution at room temperature. Time-resolved transient absorption spectroscopy confirmed that the potentially luminescent MLCT states of 7-10 are significantly shorter lived than the corresponding states of the model species. Photoinduced electron-transfer processes from the TTF moieties to the (excited) MLCT chromophore(s) are held responsible for the quenching processes.  相似文献   

7.
The PF6- salt of the dinuclear [(bpy)2Ru(1)Os(bpy)2]4+ complex, where 1 is a phenylacetylene macrocycle which incorporates two 2,2'-bipyridine (bpy) chelating units in opposite sites of its shape-persistent structure, was prepared. In acetonitrile solution, the Ru- and Os-based units display their characteristic absorption spectra and electrochemical properties as in the parent homodinuclear compounds. The luminescence spectrum, however, shows that the emission band of the Ru(II) unit is almost completely quenched with concomitant sensitization of the emission of the Os(II) unit. Electronic energy transfer from the Ru(II) to the Os(II) unit takes place by two distinct processes (k(en) = 2.0x10(8) and 2.2x10(7) s(-1) at 298 K). Oxidation of the Os(II) unit of [(bpy)2Ru(1)Os(bpy)2]4+ by Ce(IV) or nitric acid leads quantitatively to the [(bpy)2Ru(II)(1)Os(III)(bpy)2]5+ complex which exhibits a bpy-to-Os(III) charge-transfer band at 720 nm (epsilon(max) = 250 M(-1) cm(-1)). Light excitation of the Ru(II) unit of [(bpy)2Ru(II)(1)Os(III)(bpy)2]5+ is followed by electron transfer from the Ru(II) to the Os(III) unit (k(el,f) = 1.6x10(8) and 2.7x10(7) s(-1)), resulting in the transient formation of the [(bpy)2Ru(III)(1)Os(II)(bpy)2]5+ complex. The latter species relaxes to the [(bpy)2Ru(II)(1)Os(III)(bpy)2]5+ one by back electron transfer (k(el,b) = 9.1x10(7) and 1.2x10(7) s(-1)). The biexponential decays of the [(bpy)2*Ru(II)(1)Os(II)(bpy)2]4+, [(bpy)2*Ru(II)(1)Os(III)(bpy)2]5+, and [(bpy)2Ru(III)(1)Os(II)(bpy)2]5+ species are related to the presence of two conformers, as expected because of the steric hindrance between hydrogen atoms of the pyridine and phenyl rings. Comparison of the results obtained with those previously reported for other Ru-Os polypyridine complexes shows that the macrocyclic ligand 1 is a relatively poor conducting bridge.  相似文献   

8.
The article deals with the ruthenium complexes, [(bpy)Ru(Q')(2)] (1-3) incorporating two unsymmetrical redox-noninnocent iminoquinone moieties [bpy = 2,2'-bipyridine; Q' = 3,5-di-tert-butyl-N-aryl-1,2-benzoquinonemonoimine, aryl = C(6)H(5) (Q'(1)), 1; m-Cl(2)C(6)H(3) (Q'(2)), 2; m-(OCH(3))(2)C(6)H(3) (Q'(3)), 3]. 1 and 3 have been preferentially stabilised in the cc-isomeric form while both the ct- and cc-isomeric forms of 2 are isolated [ct: cis and trans and cc: cis and cis with respect to the mutual orientations of O and N donors of two Q']. The isomeric identities of 1-3 have been authenticated by their single-crystal X-ray structures. The collective consideration of crystallographic and DFT data along with other analytical events reveals that 1-3 exhibit the valence configuration of [(bpy)Ru(II)(Q'(Sq))(2)]. The magnetization studies reveal a ferromagnetic response at 300 K and virtual diamagnetic behaviour at 2 K. DFT calculations on representative 2a and 2b predict that the excited triplet (S = 1) state is lying close to the singlet (S = 0) ground state with singlet-triplet separation of 0.038 eV and 0.075 eV, respectively. In corroboration with the paramagnetic features the complexes exhibit free radical EPR signals with g~2 and (1)HNMR spectra with broad aromatic proton signals associated with the Q' at 300 K. Experimental results in conjunction with the DFT (for representative 2a and 2b) reveal iminoquinone based preferential electron-transfer processes leaving the ruthenium(ii) ion mostly as a redox insensitive entity: [(bpy)Ru(II)(Q'(Q))(2)](2+) (1(2+)-3(2+)) ? [(bpy)Ru(II)(Q(')(Sq))(Q(')(Q))](+) (1(+)-3(+)) ? [(bpy)Ru(II)(Q(')(Sq))(2)] (1-3) ? [(bpy)Ru(II)(Q(')(Sq))(Q(')(Cat))](-)/[(bpy)Ru(III)(Q(')(Cat))(2)](-) (1(-)-3(-)). The diamagnetic doubly oxidised state, [(bpy)Ru(II)(Q'(Q))(2)](2+) in 1(2+)-3(2+) has been authenticated further by the crystal structure determination of the representative [(bpy)Ru(II)(Q'(3))(2)](ClO(4))(2) [3](ClO(4))(2) as well as by its sharp (1)H NMR spectrum. The key electronic transitions in each redox state of 1(n)-3(n) have been assigned by TD-DFT calculations on representative 2a and 2b.  相似文献   

9.
The first luminescent and redox active multinuclear Ru(II) compound containing both electron-poor (2,3-bis(2-pyridyl)pyrazine, 2,3-dpp) and electron-rich (3,5-bis(pyridyn-2-yl)-1,2,4-triazole, Hbpt) polypyridine bridging ligands has been synthesized. The novel compound is [(bpy)(2)Ru(&mgr;-bpt)Ru{(&mgr;-2,3-dpp)Ru(bpy)(2)}(2)](7+) (1; bpy = 2,2'-bipyridine). Its absorption spectrum, luminescence properties, and redox behavior have been studied and are compared with the properties of the parent complexes [Ru{(&mgr;-2,3-dpp)Ru(bpy)(2)}(3)](8+) (2) and [(bpy)(2)Ru(&mgr;-bpt)Ru(bpy)(2)](3+) (3). The absorption spectrum of 1 is dominated by ligand-centered bands in the UV region and by metal-to-ligand charge transfer bands in the visible region. Excited states and oxidation and reduction processes are localized in specific sites of the multicomponent structure. However, perturbations of each component on the redox and excited states of the others, as well as electronic interactions between the chromophores, can be observed. Intercomponent energy transfer from the upper-lying (&mgr;-bpt)(bpy)Ru-->bpy CT excited state of the Ru(bpy)(2)(&mgr;-bpt)(+) component to the lower-lying (bpy)(2)Ru-->&mgr;-2,3-dpp CT excited state of the Ru(bpy)(2)(&mgr;-2,3-dpp)(2+) subunit(s) is efficient in 1 in fluid solution at room temperature, whereas this process is not observed in a rigid matrix at 77 K. A two-step energy transfer mechanism is proposed to explain the photophysical properties of the new compound.  相似文献   

10.
A series of mono- and dinuclear Ru(bpy)(2) complexes (bpy = 2,2'-bipyridine) containing 2,2'-bis(benzimidazol-2-yl)-4,4'-bipyridine (bbbpyH(2)) were prepared. The mononuclear complex [Ru(bpy)(2)(bbbpyH(2))](ClO(4))(2).CH(3)OH.4H(2)O was characterized by an X-ray structure determination. Crystal data are as follows: triclinic, space group P&onemacr;, a = 14.443(4) ?, b = 15.392(4) ?, c = 11.675(2)?, alpha = 101.44(2) degrees, beta = 107.85(2) degrees, gamma = 96.36(2) degrees, V = 2380(1) ?(3), Z = 2. The coordination geometry of the ruthenium(II) ion is approximately octahedral. The dihedral angle between the two pyridyl rings in bbbpyH(2) is 9.4(3) degrees, which is close to coplanar, in the complex. Mono- and dinuclear complexes exhibit broad charge-transfer absorption bands at 420-520 nm and emission at 660-720 nm in CH(3)CN solution with lifetimes of 200-800 ns at room temperature. Transient difference absorption spectra and resonance Raman (rR) spectra were used to assign the charge-transfer bands in the 420-520 nm region and to identify the lowest excited states. Both absorption and emission spectra are sensitive to solvent and solution pH. Deprotonation of the dinuclear complex raises the energies of the pi orbitals of the bbbpyH(2) ligand, so that they become closer in energy to the pi orbitals of bpy. The intervalence band of [(bpy)(2)Ru(bbbpyH(2))Ru(bpy)(2)](5+)()()is observed at 1200 nm ( epsilon = 170 M(-)(1) cm(-)(1)) in CH(3)CN. The value of the electronic coupling matrix element, H(AB), was determined as 120 cm(-)(1). Upon deprotonation, the IT band was not observed. It is therefore concluded that a superexchange pathway occurs predominantly via the Ru(II) dpi-bbbpyH(2) pi interaction, since deprotonation decreases the interaction. The role of the intervening fragments in the bridging ligand is discussed from the viewpoint of orbital energies and their orbital mixing with Ru dpi orbitals.  相似文献   

11.
The labile nature of the coordinated water ligands in the organometallic aqua complex [Ru(dppe)(CO)(H(2)O)(3)][OTf](2) (1) (dppe = Ph(2)PCH(2)CH(2)PPh(2); OTf = OSO(2)CF(3)) has been investigated through substitution reactions with a range of incoming ligands. Dissolution of 1 in acetonitrile or dimethyl sulfoxide results in the facile displacement of all three waters to give [Ru(dppe)(CO)(CH(3)CN)(3)][OTf](2) (2) and [Ru(dppe)(CO)(DMSO)(3)][OTf](2) (3), respectively. Similarly, 1 reacts with Me(3)CNC to afford [Ru(dppe)(CO)(CNCMe(3))(3)][OTf](2) (4). Addition of 1 equiv of 2,2'-bipyridyl (bpy) or 4,4'-dimethyl-2,2'-bipyridyl (Me(2)bpy) to acetone/water solutions of 1 initially yields [Ru(dppe)(CO)(H(2)O)(bpy)][OTf](2) (5a) and [Ru(dppe)(CO)(H(2)O)(Me(2)bpy)][OTf](2) (6a), in which the coordinated water lies trans to CO. Compounds 5a and 6a rapidly rearrange to isomeric species (5b, 6b) in which the ligated water is trans to dppe. Further reactivity has been demonstrated for 6b, which, upon dissolution in CDCl(3), loses water and coordinates a triflate anion to afford [Ru(dppe)(CO)(OTf)(Me(2)bpy)][OTf] (7). Reaction of 1 with CH(3)CH(2)CH(2)SH gives the dinuclear bridging thiolate complex [[(dppe)Ru(CO)](2)(mu-SCH(2)CH(2)CH(3))(3)][OTf] (8). The reaction of 1 with CO in acetone/water is slow and yields the cationic hydride complex [Ru(dppe)(CO)(3)H][OTf] (9) via a water gas shift reaction. Moreover, the same mechanism can also be used to account for the previously reported synthesis of 1 upon reaction of Ru(dppe)(CO)(2)(OTf)(2) with water (Organometallics 1999, 18, 4068).  相似文献   

12.
Tris-(2, 2'-bipyridyl)ruthenium(II) complex, Ru(bpy)(3)(2+), was immobilized on the Dowex-50 W cationic ion-exchange resin. The chemiluminescent characteristics of Ru(bpy)(3)(2+) in solution and in resin form were compared by using batch and flow injection methods. A strong chemiluminescence was observed during the reaction of Ru(bpy)(3)(2+) both in solution and in resin with KMnO(4) or Ce(SO(4))(2) under acidic or basic conditions. The Ru(bpy)(3)(2+) immobilized resin is stable, which can be used at least for 6 months when it reacts with the dilute KMnO(4) solution. Based on this property, Ru(bpy)(3)(2+) immobilized in the resin phase was developed as a flow-through chemiluminescent sensor that could be used to determine oxalate, sulfite and ethanol chemically or electronically with Ru(bpy)(3)(3+) generation on the surface of resin. The limits of detection were 1 x 10(-6) M for oxalate, 0.5% (v/v) for ethanol and 1 x 10(-7) M for sulfite. The method has been successfully applied to determine sulfite in sugar.  相似文献   

13.
Two Ru(II) complexes, [Ru(bpy)2L](ClO4)2 (1) and [Ru(bpy)2L'](BF4)2 (2), where bpy is 2,2'-bipyridine, L is diacetyl dihydrazone, and L' 1:2 is the condensate of L and acetone, are synthesized. From X-ray crystal structures, both are found to contain distorted octahedral RuN(6)(2+) cores. NMR spectra show that the cations in 1 and 2 possess a C2 axis in solution. They display the expected metal-to-ligand charge transfer (1MLCT) band in the 400-500 nm region. Complex 1 is nonemissive at room temperature in solution as well as at 80 K. In contrast, complex 2 gives rise to an appreciable emission upon excitation at 440 nm. The room-temperature emission is centered at 730 nm (lambda(em)(max)) with a quantum yield (Phi(em)) of 0.002 and a lifetime (tau(em)) of 42 ns in an air-equilibrated methanol-ethanol solution. At 80 K, Phi(em) = 0.007 and tau(em) = 178 ns, with a lambda(em)(max) of 690 nm, which is close to the 0-0 transition, indicating an 3MLCT excited-state energy of 1.80 eV. The radiative rate constant (5 x 10(4) s(-1)) at room temperature and 80 K is almost temperature independent. From spectroelectrochemistry, it is found that bpy is easiest to reduce in 2 and that L is easiest in 1. The implications of this are that in 2 the lowest (3)MLCT state is localized on a bpy ligand and in 1 it is localized on L. Transient absorption results also support these assignments. As a consequence, even though 2 shows a fairly strong and long-lived emission from a Ru(II) --> bpy CT state, the Ru(II) --> L CT state in 1 shows no detectable emission even at 80 K.  相似文献   

14.
We have successfully applied electrospray ionization mass spectrometry (ESI-MS) and (1)H NMR analyses to study ligand substitution reactions of mu-oxo ruthenium bipyridine dimers cis,cis-[(bpy)(2)(L)RuORu(L')(bpy)(2)](n+) (bpy = 2,2'-bipyridine; L and L' = NH(3), H(2)O, and HO(-)) with solvent molecules, that is, acetonitrile, methanol, and acetone. The results clearly show that the ammine ligand is very stable and was not substituted by any solvents, while the aqua ligand was rapidly substituted by all the solvents. In acetonitrile and acetone solutions, the substitution reaction of the aqua ligand(s) competed with a deprotonation reaction from the ligand. The hydroxyl ligand was not substituted by acetonitrile or acetone, but it exchanged slowly with CH(3)O(-) in methanol. The substitution reaction of the aqua ligands in [(bpy)(2)(H(2)O)Ru(III)ORu(III)(H(2)O)(bpy)(2)](4+) was more rapid than that of the hydroxyl ligand in [(bpy)(2)(H(2)O)Ru(III)ORu(IV)(OH)(bpy)(2)](4+). In methanol, slow reduction of Ru(III) to Ru(II) was observed in all the mu-oxo dimers, and the Ru-O-Ru bridge was then cleaved to give mononuclear Ru(II) complexes.  相似文献   

15.
Trichlorostannyl complexes [M(SnCl3)(bpy)2P]BPh4 [M = Ru, P = P(OEt)(3), 1a PPh(OEt)2 1b; M = Os, P = P(OEt)3 2; bpy = 2,2'-bipyridine] were prepared by allowing chloro complexes [MCl(bpy)2P]BPh4 to react with SnCl2 in 1,2-dichloroethane. Bis(trichlorostannyl) compounds Ru(SnCl3)2(N-N)P2 [N-N = bpy, P = P(OEt)3 3a, PPh(OEt)2 3b; N-N = 1,10-phenanthroline (phen), P = P(OEt)3 4] were also prepared by reacting [RuCl(N-N)P3]BPh4 precursors with SnCl2.2H2O in ethanol. Treatment of both mono- 1a, 2 and bis 3a trichlorostannyl complexes with NaBH4 afforded mono- and bis(trihydridestannyl) derivatives [M(SnH3)(bpy)2P]BPh4 5, 6 and Ru(SnH3)2(bpy)P2 7[P = P(OEt)3], respectively. Treatment of 1a, 2 with MgBrMe gave the trimethylstannyl complexes [M(SnMe3)(bpy)2P]BPh4 8, 9 and treatment of 3a afforded the bis(stannyl) Ru(SnClMe2)2(bpy)P2 10 derivative. Alkynylstannyl complexes [M{Sn(C triple bond CR)3}(bpy)2P]BPh4 11-13 and Ru[Sn(C triple bond CR)3]2(N-N)P2 14-17(R = p-tolyl, Bu t; N-N = bpy, phen) were also prepared by allowing trichlorostannyl compounds 1-4 to react with Li+[RC triple bond C]* in thf. The complexes were characterised spectroscopically and by the X-ray crystal structure determination of [Ru(SnMe3)(bpy)2{P(OEt)3}]BPh4 derivative.  相似文献   

16.
Paramagnetic diruthenium(III) complexes (acac)(2)Ru(III)(mu-OC(2)H(5))(2)Ru(III)(acac)(2) (6) and [(acac)(2)Ru(III)(mu-L)Ru(III)(acac)(2)](ClO(4))(2), [7](ClO(4))(2), were obtained via the reaction of binucleating bridging ligand, N,N,N',N'-tetra(2-pyridyl)-1,4-phenylenediamine [(NC(5)H(4))(2)-N-C(6)H(4)-N-(NC(5)H(4))(2), L] with the monomeric metal precursor unit (acac)(2)Ru(II)(CH(3)CN)(2) in ethanol under aerobic conditions. However, the reaction of L with the metal fragment Ru(II)(bpy)(2)(EtOH)(2)(2+) resulted in the corresponding [(bpy)(2)Ru(II) (mu-L) Ru(II)(bpy)(2)](ClO(4))(4), [8](ClO(4))(4). Crystal structures of L and 6 show that, in each case, the asymmetric unit consists of two independent half-molecules. The Ru-Ru distances in the two crystallographically independent molecules (F and G) of 6 are found to be 2.6448(8) and 2.6515(8) A, respectively. Variable-temperature magnetic studies suggest that the ruthenium(III) centers in 6 and [7](ClO(4))(2) are very weakly antiferromagnetically coupled, having J = -0.45 and -0.63 cm(-)(1), respectively. The g value calculated for 6 by using the van Vleck equation turned out to be only 1.11, whereas for [7](ClO(4))(2), the g value is 2.4, as expected for paramagnetic Ru(III) complexes. The paramagnetic complexes 6 and [7](2+) exhibit rhombic EPR spectra at 77 K in CHCl(3) (g(1) = 2.420, g(2) = 2.192, g(3) = 1.710 for 6 and g(1) = 2.385, g(2) = 2.177, g(3) = 1.753 for [7](2+)). This indicates that 6 must have an intermolecular magnetic interaction, in fact, an antiferromagnetic interaction, along at least one of the crystal axes. This conclusion was supported by ZINDO/1-level calculations. The complexes 6, [7](2+), and [8](4+) display closely spaced Ru(III)/Ru(II) couples with 70, 110, and 80 mV separations in potentials between the successive couples, respectively, implying weak intermetallic electrochemical coupling in their mixed-valent states. The electrochemical stability of the Ru(II) state follows the order: [7](2+) < 6 < [8](4+). The bipyridine derivative [8](4+) exhibits a strong luminescence [quantum yield (phi) = 0.18] at 600 nm in EtOH/MeOH (4:1) glass (at 77 K), with an estimated excited-state lifetime of approximately 10 micros.  相似文献   

17.
Tetra-peri-(tert-butyl-benzo)-di-peri-(pyrimidino)-coronene 1, the parent compound of the nitrogen heterosuperbenzene family N-HSB, is employed as a novel monotopic ligand in the formation of [Pd(eta3-C3H5)(1)]PF6 2 and [Ru(bpy)2(1)](PF6)2 (where bpy = 2,2'-bipyridine 3a and d8-2,2'-bipyridine 3b). These N-coordinated complexes are fully characterized by 1H NMR and IR spectroscopy and ESI-MS. Metal coordination has a profound effect on both the absorption and the emission properties of 1. Pd(II) coordination causes a red-shift in the low-energy absorptions, a decrease in the intensity of the n-pi absorptions, and a quenching of the emission. Ru(II) coordination causes absorption throughout the visible region and creates two new complexes that join an elite group of compounds known as "black" absorbers. 3a and 3b possess two discernible 1MLCT bands. The one of exceptionally low energy (lambda(max) = 615 nm) has an associated (3)MLCT emission (lambda(max) = 880 nm) due to the unprecedented electron delocalization and acceptor properties of the rigid aromatic N-HSB 1. Both Ru(II) complexes are near-IR emitters with unusually protracted emission lifetimes of 320 ns at 77 K. They are photochemically inert, and their electrochemical properties are consistent with the presence of a low-lying pi orbital on 1. The first two reversible reductions (E(1/2) (CH3CN), -0.54 V, -1.01 V vs SCE) are due to the stepwise reduction of 1 and are anodically shifted as compared to [Ru(bpy)3]2+. Temperature- and concentration-dependent NMR studies on 2 and 3a suggest extensive aggregation is occurring in solution.  相似文献   

18.
Rates of reduction of Os(III), Ru(III), and Re(I) by Cu(I) in His83-modified Pseudomonas aeruginosa azurins (M-Cu distance approximately 17 A) have been measured in single crystals, where protein conformation and surface solvation are precisely defined by high-resolution X-ray structure determinations: 1.7(8) x 10(6) s(-1) (298 K), 1.8(8) x 10(6) s(-1) (140 K), [Ru(bpy)2(im)(3+)-]; 3.0(15) x 10(6) s(-1) (298 K), [Ru(tpy)(bpy)(3+)-]; 3.0(15) x 10(6) s(-1) (298 K), [Ru(tpy)(phen)(3+)-]; 9.0(50) x 10(2) s(-1) (298 K), [Os(bpy)2(im)(3+)-]; 4.4(20) x 10(6) s(-1) (298 K), [Re(CO)3(phen)(+)] (bpy = 2,2'-bipyridine; im = imidazole; tpy = 2,2':6',2' '-terpyridine; phen = 1,10-phenanthroline). The time constants for electron tunneling in crystals are roughly the same as those measured in solution, indicating very similar protein structures in the two states. High-resolution structures of the oxidized (1.5 A) and reduced (1.4 A) states of Ru(II)(tpy)(phen)(His83)Az establish that very small changes in copper coordination accompany reduction but reveal a shorter axial interaction between copper and the Gly45 peptide carbonyl oxygen [2.6 A for Cu(II)] than had been recognized previously. Although Ru(bpy)2(im)(His83)Az is less solvated in the crystal, the reorganization energy for Cu(I) --> Ru(III) electron transfer falls in the range (0.6-0.8 eV) determined experimentally for the reaction in solution. Our work suggests that outer-sphere protein reorganization is the dominant activation component required for electron tunneling.  相似文献   

19.
The novel mononuclear and dinuclear complexes [Ru(trpy)(bpy)(apc)][PF(6)] and [(Ru(trpy)(bpy))(2)(mu-adpc)][PF(6)](2) (bpy = 2,2'-bipyridine, trpy = 2,2':6',2' '-terpyridine, apc(-) = 4-azo(phenylcyanamido)benzene, and adpc(2)(-) = 4,4'-azodi(phenylcyanamido)) were synthesized and characterized by (1)H NMR, UV-vis, and cyclic voltammetry. Crystallography showed that the dinuclear Ru(II) complex crystallizes from diethyl ether/acetonitrile solution as [(Ru(trpy)(bpy))(2)(mu-adpc)][PF(6)](2).2(acetonitrile).2(diethyl ether). Crystal structure data are as follows: crystal system triclinic, space group P1, with a, b, and c = 12.480(2), 13.090(3) and 14.147(3) A, respectively, alpha, beta, and gamma = 79.792(3), 68.027(3), and 64.447(3) degrees, respectively, V = 1933.3(6) A(3), and Z = 1. The structure was refined to a final R factor of 0.0421. The mixed-valence complex with metal ions, separated by a through-space distance of 19.5 A, is a class III system, having the comproportionation constant K(c) = 1.3 x 10(13) and an intervalence band at 1920 nm (epsilon(max) = 10 000 M(-1) cm(-1)), in dimethylformamide solution. The results of this study strongly suggest that the bridging ligand adpc(2-) can mediate metal-metal coupling through both hole-transfer and electron-transfer superexchange mechanisms.  相似文献   

20.
The complexes [Ru(tpy)(bpy)(dmso)](OSO(2)CF(3))(2) and trans-[Ru(tpy)(pic)(dmso)](PF(6)) (tpy is 2,2':6',2' '-terpyridine, bpy is 2,2'-bipyridine, pic is 2-pyridinecarboxylate, and dmso is dimethyl sulfoxide) were investigated by picosecond transient absorption spectroscopy in order to monitor excited-state intramolecular S-->O isomerization of the bound dmso ligand. For [Ru(tpy)(bpy)(dmso)](2+), global analysis of the spectra reveals changes that are fit by a biexponential decay with time constants of 2.4 +/- 0.2 and 36 +/- 0.2 ps. The first time constant is assigned to relaxation of the S-bonded (3)MLCT excited state. The second time constant represents both excited-state relaxation to ground state and excited-state isomerization to form O-[Ru(tpy)(bpy)(dmso)](2+). In conjunction with the S-->O isomerization quantum yield (Phi(S)(-->)(O) = 0.024), isomerization of [Ru(tpy)(bpy)(dmso)](2+) occurs with a time constant of 1.5 ns. For trans-[Ru(tpy)(pic)(dmso)](+), global analysis of the transient spectra reveals time constants of 3.6 +/- 0.2 and 118 +/- 2 ps associated with these two processes. In conjunction with the S-->O isomerization quantum yield (Phi(S)(-->)(O) = 0.25), isomerization of trans-[Ru(tpy)(pic)(dmso)](+) occurs with a time constant of 480 ps. In both cases, the thermally relaxed excited states are assigned as terpyridine-localized (3)MLCT states. Electronic state diagrams are compiled employing these data as well as electrochemical, absorption, and emission data to describe the reactivity of these complexes. The data illustrate that rapid bond-breaking and bond-making reactions can occur from (3)MLCT excited states formed from visible light irradiation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号