首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this paper, we consider massless Dirac fields propagating in the outer region of de Sitter–Reissner–Nordstr?m black holes. We show that the metric of such black holes is uniquely determined by the partial knowledge of the corresponding scattering matrix S(λ) at a fixed energy λ ≠ 0. More precisely, we consider the partial wave scattering matrices S(λ, n) (here λ ≠ 0 is the fixed energy and n ? \mathbbN*{n \in \mathbb{N}^{*}} denotes the angular momentum) defined as the restrictions of the full scattering matrix on a well chosen basis of spin-weighted spherical harmonics. We prove that the mass M, the square of the charge Q 2 and the cosmological constant Λ of a dS-RN black hole (and thus its metric) can be uniquely determined from the knowledge of either the transmission coefficients T(λ, n), or the reflexion coefficients R(λ, n) (resp. L(λ, n)), for all n ? L{n \in {\mathcal{L}}} where L{\mathcal{L}} is a subset of \mathbbN*{\mathbb{N}^{*}} that satisfies the Müntz condition ?n ? L\frac1n = +¥{\sum_{n \in{\mathcal{L}}}\frac{1}{n} = +\infty} . Our main tool consists in complexifying the angular momentum n and in studying the analytic properties of the “unphysical” scattering matrix S(λ, z) in the complex variable z. We show, in particular, that the quantities \frac1T(l,z){\frac{1}{T(\lambda,z)}}, \fracR(l,z)T(l,z){\frac{R(\lambda,z)}{T(\lambda,z)}} and \fracL(l,z)T(l,z){\frac{L(\lambda,z)}{T(\lambda,z)}} belong to the Nevanlinna class in the region ${\{z \in \mathbb{C}, Re(z) > 0 \}}${\{z \in \mathbb{C}, Re(z) > 0 \}} for which we have analytic uniqueness theorems at our disposal. Eventually, as a by-product of our method, we obtain reconstruction formulae for the surface gravities of the event and cosmological horizons of the black hole which have an important physical meaning in the Hawking effect.  相似文献   

2.
Given g { l\fracn2 g( lj x - kb ) }jezjezn ,where  lj \left\{ {\lambda ^{\frac{n}{2}} g\left( {\lambda _j x - kb} \right)} \right\}_{j\varepsilon zj\varepsilon z^n } ,where\;\lambda _j > 0 and b > 0. Sufficient conditions for the wavelet system to constitute a frame for L 2(R n ) are given. For a class of functions g{ ezrib( j,x ) g( x - lk ) }jezn ,kez\left\{ {e^{zrib\left( {j,x} \right)} g\left( {x - \lambda _k } \right)} \right\}_{j\varepsilon z^n ,k\varepsilon z} to be a frame.  相似文献   

3.
Let G be a reductive algebraic group defined over \Bbb Q {\Bbb Q} . Let P, P' be parabolic subgroups of G, defined over \Bbb Q {\Bbb Q} , and let _boxclose_boxclose, a_P') t \in W({\frak a}_{P}, {\frak a}_{P'}) . In this paper we study the intertwining operator MP¢|P(t,l), l ? \frak a*P,\Bbb C M_{P' \vert P}(t,\lambda),\,\lambda \in {\frak a}^*_{P,{\Bbb C}} , acting in corresponding spaces of automorphic forms. One of the main results states that each matrix coefficient of MP¢|P(t,l) M_{P' \vert P}(t,\lambda) is a meromorphic function of order £ n + 1 \le n + 1 , where n = dim G. Using this result, we further investigate the rank one intertwining operators, in particular, we study the distribution of their poles.  相似文献   

4.
Using the approximate functional equation for L(l,a, s) = ?n=0 [(e(ln))/((n+a)s)] L(\lambda,\alpha, s) = \sum\limits_{n=0}^{\infty} {e(\lambda n)\over (n+\alpha)^s} , we prove for fixed parameters $ 0<\lambda,\alpha\leq 1 $ 0<\lambda,\alpha\leq 1 asymptotic formulas for the mean square of L(l,a,s) L(\lambda,\alpha,s) inside the critical strip. This improves earlier results of D. Klusch and of A. Laurin)ikas.  相似文献   

5.
Let \mathbb Dn:={z=(z1,?, zn) ? \mathbb Cn:|zj| < 1,   j=1,?, n}{\mathbb {D}^n:=\{z=(z_1,\ldots, z_n)\in \mathbb {C}^n:|z_j| < 1, \;j=1,\ldots, n\}}, and let [`(\mathbbD)]n{\overline{\mathbb{D}}^n} denote its closure in \mathbb Cn{\mathbb {C}^n}. Consider the ring
Cr([`(\mathbbD)]n;\mathbb C) = {f:[`(\mathbbD)]n? \mathbb C:f   is   continuous   and  f(z)=[`(f([`(z)]))]   (z ? [`(\mathbbD)]n)}C_{\rm r}(\overline{\mathbb{D}}^n;\mathbb {C}) =\left\{f: \overline{\mathbb{D}}^n\rightarrow \mathbb {C}:f \,\, {\rm is \,\, continuous \,\, and}\,\, f(z)=\overline{f(\overline{z})} \;(z\in \overline{\mathbb{D}}^n)\right\}  相似文献   

6.
Let W í \Bbb C\Omega \subseteq {\Bbb C} be a simply connected domain in \Bbb C{\Bbb C} , such that {¥} è[ \Bbb C \[`(W)]]\{\infty\} \cup [ {\Bbb C} \setminus \bar{\Omega}] is connected. If g is holomorphic in Ω and every derivative of g extends continuously on [`(W)]\bar{\Omega} , then we write gA (Ω). For gA (Ω) and z ? [`(W)]\zeta \in \bar{\Omega} we denote SN (g,z)(z) = ?Nl=0\fracg(l) (z)l ! (z-z)lS_N (g,\zeta )(z)= \sum^{N}_{l=0}\frac{g^{(l)} (\zeta )}{l !} (z-\zeta )^l . We prove the existence of a function fA(Ω), such that the following hold:
i)  There exists a strictly increasing sequence μn ∈ {0, 1, 2, …}, n = 1, 2, …, such that, for every pair of compact sets Γ, Δ ⊂ [`(W)]\bar{\Omega} and every l ∈ {0, 1, 2, …} we have supz ? G supw ? D \frac?l?wl Smnf,z) (w)-f(l)(w) ? 0,    as n ? + ¥    and\sup_{\zeta \in \Gamma} \sup_{w \in \Delta} \frac{\partial^l}{\partial w^l} S_{\mu_ n} (\,f,\zeta) (w)-f^{(l)}(w) \rightarrow 0, \hskip 7.8pt {\rm as}\,n \rightarrow + \infty \quad {\rm and}
ii)  For every compact set K ì \Bbb CK \subset {\Bbb C} with K?[`(W)] = ?K\cap \bar{\Omega} =\emptyset and Kc connected and every function h: K? \Bbb Ch: K\rightarrow {\Bbb C} continuous on K and holomorphic in K0, there exists a subsequence { m¢n }n=1\{ \mu^\prime _n \}^{\infty}_{n=1} of {mn }n=1\{\mu_n \}^{\infty}_{n=1} , such that, for every compact set L ì [`(W)]L \subset \bar{\Omega} we have supz ? L supz ? K Sm¢nf,z)(z)-h(z) ? 0,    as  n? + ¥.\sup_{\zeta \in L} \sup_{z\in K} S_{\mu^\prime _n} (\,f,\zeta )(z)-h(z) \rightarrow 0, \hskip 7.8pt {\rm as} \, n\rightarrow + \infty .
  相似文献   

7.
We define a generalized Li coefficient for the L-functions attached to the Rankin–Selberg convolution of two cuspidal unitary automorphic representations π and π of GLm(\mathbbAF)GL_{m}(\mathbb{A}_{F}) and GLm(\mathbbAF)GL_{m^{\prime }}(\mathbb{A}_{F}) . Using the explicit formula, we obtain an arithmetic representation of the n th Li coefficient lp,p(n)\lambda _{\pi ,\pi ^{\prime }}(n) attached to L(s,pf×[(p)\tilde]f)L(s,\pi _{f}\times \widetilde{\pi}_{f}^{\prime }) . Then, we deduce a full asymptotic expansion of the archimedean contribution to lp,p(n)\lambda _{\pi ,\pi ^{\prime }}(n) and investigate the contribution of the finite (non-archimedean) term. Under the generalized Riemann hypothesis (GRH) on non-trivial zeros of L(s,pf×[(p)\tilde]f)L(s,\pi _{f}\times \widetilde{\pi}_{f}^{\prime }) , the nth Li coefficient lp,p(n)\lambda _{\pi ,\pi ^{\prime }}(n) is evaluated in a different way and it is shown that GRH implies the bound towards a generalized Ramanujan conjecture for the archimedean Langlands parameters μ π (v,j) of π. Namely, we prove that under GRH for L(s,pf×[(p)\tilde]f)L(s,\pi _{f}\times \widetilde{\pi}_{f}) one has |Remp(v,j)| £ \frac14|\mathop {\mathrm {Re}}\mu_{\pi}(v,j)|\leq \frac{1}{4} for all archimedean places v at which π is unramified and all j=1,…,m.  相似文献   

8.
We consider the weighted Bergman spaces HL2(\mathbb Bd, ml){\mathcal {H}L^{2}(\mathbb {B}^{d}, \mu_{\lambda})}, where we set dml(z) = cl(1-|z|2)l dt(z){d\mu_{\lambda}(z) = c_{\lambda}(1-|z|^2)^{\lambda} d\tau(z)}, with τ being the hyperbolic volume measure. These spaces are nonzero if and only if λ > d. For 0 < λ ≤ d, spaces with the same formula for the reproducing kernel can be defined using a Sobolev-type norm. We define Toeplitz operators on these generalized Bergman spaces and investigate their properties. Specifically, we describe classes of symbols for which the corresponding Toeplitz operators can be defined as bounded operators or as a Hilbert–Schmidt operators on the generalized Bergman spaces.  相似文献   

9.
For ${\alpha\in\mathbb C{\setminus}\{0\}}For a ? \mathbb C\{0}{\alpha\in\mathbb C{\setminus}\{0\}} let E(a){\mathcal{E}(\alpha)} denote the class of all univalent functions f in the unit disk \mathbbD{\mathbb{D}} and is given by f(z)=z+a2z2+a3z3+?{f(z)=z+a_2z^2+a_3z^3+\cdots}, satisfying
${\rm Re}\left (1+ \frac{zf'(z)}{f'(z)}+\alpha zf'(z)\right ) > 0 \quad {\rm in }\,{\mathbb D}.${\rm Re}\left (1+ \frac{zf'(z)}{f'(z)}+\alpha zf'(z)\right ) > 0 \quad {\rm in }\,{\mathbb D}.  相似文献   

10.
Let f be a cusp form of the Hecke space \frak M0(l,k,e){\frak M}_0(\lambda,k,\epsilon) and let L f be the normalized L-function associated to f. Recently it has been proved that L f belongs to an axiomatically defined class of functions [`(S)]\sharp\bar{\cal S}^\sharp . We prove that when λ ≤ 2, L f is always almost primitive, i.e., that if L f is written as product of functions in [`(S)]\sharp\bar{\cal S}^\sharp , then one factor, at least, has degree zeros and hence is a Dirichlet polynomial. Moreover, we prove that if l ? {?2,?3,2}\lambda\notin\{\sqrt{2},\sqrt{3},2\} then L f is also primitive, i.e., that if L f = F 1 F 2 then F 1 (or F 2) is constant; for l ? {?2,?3,2}\lambda\in\{\sqrt{2},\sqrt{3},2\} the factorization of non-primitive functions is studied and examples of non-primitive functions are given. At last, the subset of functions f for which L f belongs to the more familiar extended Selberg class S\sharp{\cal S}^\sharp is characterized and for these functions we obtain analogous conclusions about their (almost) primitivity in S\sharp{\cal S}^\sharp .  相似文献   

11.
Suppose that f1, ?, fmf_1, \ldots , f_m satisfy functional equations of type¶¶ fi(zd) = Pi(z, fi(z))     or     fi(z) = Pi(z, fi(zd))f_i({z^d}) = P_i(z, f_i(z)) \quad {or} \quad f_i(z) = P_i(z, f_i({z^d})) ¶for i = 1, ?, mi = 1, \ldots , m, an integer d > 1 and polynomials Pi ? \Bbb C (z)[ y]P_i \in \Bbb C (z)[ {y}] with pairwise distinct partial degrees degy( P1), ?, degy( Pm)\deg _y( {P_1}), \ldots , \deg _y( {P_m}). Generalizing a result of Keiji Nishioka and using an idea of Kumiko Nishioka we show, that f1, ?, fmf_1, \ldots , f_m can only be algebraically dependent over \Bbb C (z)\Bbb C (z), if there is an index k ? { 1, ?, m}\kappa \in \{ {1, \ldots , m}\} such that fkf_{\kappa } is rational.  相似文献   

12.
We study the well-posedness of the fractional differential equations with infinite delay (P 2): Da u(t)=Au(t)+òt-¥a(t-s)Au(s)ds + f(t), (0 £ t £ 2p){D^\alpha u(t)=Au(t)+\int^{t}_{-\infty}a(t-s)Au(s)ds + f(t), (0\leq t \leq2\pi)}, where A is a closed operator in a Banach space ${X, \alpha > 0, a\in {L}^1(\mathbb{R}_+)}${X, \alpha > 0, a\in {L}^1(\mathbb{R}_+)} and f is an X-valued function. Under suitable assumptions on the parameter α and the Laplace transform of a, we completely characterize the well-posedness of (P 2) on Lebesgue-Bochner spaces Lp(\mathbbT, X){L^p(\mathbb{T}, X)} and periodic Besov spaces B p,qs(\mathbbT, X){{B} _{p,q}^s(\mathbb{T}, X)} .  相似文献   

13.
We are interested in the isometric equivalence problem for the Cesàro operator C(f) (z) = \frac1z ò0zf(x) \frac11-xd x{C(f) (z) =\frac{1}{z} \int_{0}^{z}f(\xi) \frac{1}{1-\xi}d \xi} and an operator Tg(f)(z)=\frac1zò0zf(x) g(x) d x{T_{g}(f)(z)=\frac{1}{z}\int_{0}^{z}f(\xi) g^{\prime}(\xi) d \xi}, where g is an analytic function on the disc, on the Hardy and Bergman spaces. Then we generalize this to the isometric equivalence problem of two operators Tg1{T_{g_{1}}} and Tg2{T_{g_{2}}} on the Hardy space and Bergman space. We show that the operators Tg1{T_{g_{1}}} and Tg2{T_{g_{2}}} satisfy Tg1U1=U2Tg2{T_{g_{1}}U_{1}=U_{2}T_{g_{2}}} on H p , 1 ≤ p < ∞, p ≠ 2 if and only if g2(z) = lg1(eiqz){g_{2}(z) =\lambda g_{1}(e^{i\theta}z) }, where λ is a modulus one constant and U i , i = 1, 2 are surjective isometries of the Hardy Space. This is analogous to the Campbell-Wright result on isometrically equivalence of composition operators on the Hardy space.  相似文献   

14.
In this paper we classify the centers localized at the origin of coordinates, the cyclicity of their Hopf bifurcation and their isochronicity for the polynomial differential systems in \mathbbR2{\mathbb{R}^2} of degree d that in complex notation z = x + i y can be written as
[(z)\dot] = (l+i) z + (z[`(z)])\fracd-52 (A z4+j[`(z)]1-j + B z3[`(z)]2 + C z2-j[`(z)]3+j+D[`(z)]5), \dot z = (\lambda+i) z + (z \overline{z})^{\frac{d-5}{2}} \left(A z^{4+j} \overline{z}^{1-j} + B z^3 \overline{z}^2 + C z^{2-j} \overline{z}^{3+j}+D \overline{z}^5\right),  相似文献   

15.
The Heisenberg–Pauli–Weyl (HPW) uncertainty inequality on \mathbbRn{\mathbb{R}^n} says that
|| f ||2Ca,b|| |x|a f||2\fracba+b|| (-D)b/2f||2\fracaa+b.\| f \|_2 \leq C_{\alpha,\beta}\| |x|^\alpha f\|_2^\frac{\beta}{\alpha+\beta}\| (-\Delta)^{\beta/2}f\|_2^\frac{\alpha}{\alpha+\beta}.  相似文献   

16.
Let Ω and Π be two finitely connected hyperbolic domains in the complex plane \Bbb C{\Bbb C} and let R(z, Ω) denote the hyperbolic radius of Ω at z and R(w, Π) the hyperbolic radius of Π at w. We consider functions f that are analytic in Ω and such that all values f(z) lie in the domain Π. This set of analytic functions is denoted by A(Ω, Π). We prove among other things that the quantities Cn(W,P) := supf ? A(W,P)supz ? W\frac|f(n)(z)| R(f(z),P)n! (R(z,W))nC_n(\Omega,\Pi)\,:=\,\sup_{f\in A(\Omega,\Pi)}\sup_{z\in \Omega}\frac{\vert f^{(n)}(z)\vert\,R(f(z),\Pi)}{n!\,(R(z,\Omega))^n} are finite for all n ? \Bbb N{n \in {\Bbb N}} if and only if ∂Ω and ∂Π do not contain isolated points.  相似文献   

17.
We generalize a one-variable result of J. Becker to several complex variables. We determine the form of arbitrary solutions of the Loewner differential equation that is satisfied by univalent subordination chains of the form ${f(z, t)=e^{tA}z+\cdots,}We generalize a one-variable result of J. Becker to several complex variables. We determine the form of arbitrary solutions of the Loewner differential equation that is satisfied by univalent subordination chains of the form f(z, t)=etAz+?,{f(z, t)=e^{tA}z+\cdots,} where A ? L(\mathbbCn, \mathbbCn){A\in L(\mathbb{C}^n, \mathbb{C}^n)} has the property k +(A) < 2m(A). Here k+(A)=max{?l:l ? s(A)}{k_+(A)=\max\{\Re\lambda:\lambda\in \sigma(A)\}} and m(A)=min{?áA(z), z ?: ||z||=1}{m(A)=\min\{\Re\langle A(z), z \rangle: \|z\|=1\}} . (The notion of parametric representation has a useful generalization under these conditions, so that one has a canonical solution of the Loewner differential equation.) In particular, we determine the form of the univalent solutions. The results are applied to subordination chains generated by spirallike mappings on the unit ball in \mathbbCn{\mathbb{C}^n} . Finally, we determine the form of the solutions in the presence of certain coefficient bounds.  相似文献   

18.
We consider random analytic functions defined on the unit disk of the complex plane f(z) = ?n=0 an Xn znf(z) = \sum_{n=0}^{\infty} a_{n} X_{n} z^{n}, where the X n ’s are i.i.d., complex-valued random variables with mean zero and unit variance. The coefficients a n are chosen so that f(z) is defined on a domain of ℂ carrying a planar or hyperbolic geometry, and Ef(z)[`(f(w))]\mathbf{E}f(z)\overline{f(w)} is covariant with respect to the isometry group. The corresponding Gaussian analytic functions have been much studied, and their zero sets have been considered in detail in a monograph by Hough, Krishnapur, Peres, and Virág. We show that for non-Gaussian coefficients, the zero set converges in distribution to that of the Gaussian analytic functions as one transports isometrically to the boundary of the domain. The proof is elementary and general.  相似文献   

19.
Recently, Girstmair and Schoissengeier studied the asymptotic behavior of the arithmetic mean of Dedekind sums \frac1j(N) ? 0 £ m < Ngcd(m,N)=1 |S(m,N)|\frac{1}{\varphi(N)} \sum_{\mathop{\mathop{ 0 \le m< N}}\limits_{\gcd(m,N)=1}} \vert S(m,N)\vert , as N → ∞. In this paper we consider the arithmetic mean of weighted differences of Dedekind sums in the form Ah(Q)=\frac1?\fracaq ? FQh(\fracaq) ×?\fracaq ? FQh(\fracaq) |s(a,q)-s(a,q)|A_{h}(Q)=\frac{1}{\sum_{\frac{a}{q} \in {\cal F}_{Q}}h\left(\frac{a}{q}\right)} \times \sum_{\frac{a}{q} \in {\cal F}_{\!Q}}h\left(\frac{a}{q}\right) \vert s(a^{\prime},q^{\prime})-s(a,q)\vert , where h:[0,1] ? \Bbb Ch:[0,1] \rightarrow {\Bbb C} is a continuous function with ò01 h(t)  d t 1 0\int_0^1 h(t) \, {\rm d} t \ne 0 , \fracaq{\frac{a}{q}} runs over FQ{\cal F}_{\!Q} , the set of Farey fractions of order Q in the unit interval [0,1] and \fracaq < \fracaq{\frac{a}{q}}<\frac{a^{\prime}}{q^{\prime}} are consecutive elements of FQ{\cal F}_{\!Q} . We show that the limit lim Q→∞ A h (Q) exists and is independent of h.  相似文献   

20.
A well-known lemma on the logarithmic derivative for a function f(z), f(0) = 1 (0 < r="> m( r,\fracff ) < ln+ { \fracT(r,f)r\fracrr- r } + 5.8501.m\left( {r,\frac{{f'}}{f}} \right)< \ln + \left\{ {\frac{{T(\rho ,f)}}{r}\frac{\rho }{{\rho - r}}} \right\} + 5.8501.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号