首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The superatomic structure of synthetic quartz single crystals with dislocation densities ρ = 54 and 570 cm?2 was studied in the initial state and after irradiation with fast neutrons with energies E n > 0.1 MeV in a WWRM reactor (St. Petersburg Nuclear Physics Institute) in the fluence range F = 0.2 × 1017?5.0 × 1018 neutrons/cm2. Weak irradiation with F = 0.2 × 1017 neutrons/cm2 causes only slight structural changes, whereas appreciable generation of defects with radii of gyration r g ~ 1–2 nm and R G ~ 40–50 nm occurs at F = 7.7 × 1017?5.0 × 1018 neutrons/cm2. As the fluence increases further, the number and volume fraction of point defects, as well as extended (channels ~2 nm in radius) and globular (amorphous phase nuclei) defects, increase.  相似文献   

2.
The influence of high energy electron (23 MeV) irradiation on the electrical characteristics of p-channel polysilicon thin film transistors (PSTFTs) was studied. The channel 220 nm thick LPCVD (low pressure chemical vapor deposition) deposited polysilicon layer was phosphorus doped by ion implantation. A 45 nm thick, thermally grown, SiO2 layer served as gate dielectric. A self-alignment technology for boron doping of the source and drain regions was used. 200 nm thick polysilicon film was deposited as a gate electrode. The obtained p-channel PSTFTs were irradiated with different high energy electron doses. Leakage currents through the gate oxide and transfer characteristics of the transistors were measured. A software model describing the field enhancement and the non-uniform current distribution at textured polysilicon/oxide interface was developed. In order to assess the irradiation-stimulated changes of gate oxide parameters the gate oxide tunneling conduction and transistor characteristics were studied. At MeV dose of 6×1013 el/cm2, a negligible degradation of the transistor properties was found. A significant deterioration of the electrical properties of PSTFTs at MeV irradiation dose of 3×1014 el/cm2 was observed.  相似文献   

3.
It is shown that ZnO nanorods grown by MOCVD exhibit enhanced radiation hardness against high energy heavy ion irradiation as compared to bulk layers. The decrease of the luminescence intensity induced by 130 MeV Xe+23 irradiation at a dose of 1.5 × 1014 cm–2 in ZnO nanorods is nearly identical to that induced by a dose of 6 × 1012 cm–2 in bulk layers. The change in the nature of electronic transitions responsible for luminescence occurs at an irradiation dose around 1 × 1014 cm–2 and 5 × 1012 cm–2 in nanorods and bulk layers, respectively. High energy heavy ion irradiation followed by thermal annealing is also effective on the quality of ZnO nanorods grown by electrodeposition. (© 2008 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

4.
SnO2 thin films grown on glass substrates at 300 °C by reactive thermal evaporation and annealed at 600 °C were irradiated by 120 MeV Ag9+ ions. Though irradiation is known to induce lattice disorder and suppression of crystallinity, we observe grain growth at a certain fluence of irradiation. X-ray diffraction (XRD) revealed the crystalline nature of the films. The particle size estimated by Scherrer’s formula for the irradiated films was in the range 10–25 nm. The crystallite size increases with increase in fluence up to 1×1012 ions?cm?2, whereas after that the size starts decreasing. Atomic force microscope (AFM) results showed the surface modification of nanostructures for films irradiated with fluences of 1×1011 ions?cm?2 to 1×1013 ions?cm?2. The UV–visible spectrum showed the band gap of the irradiated films in the range of 3.56 eV–3.95 eV. The resistivity decreases with fluence up to 5×1012 ions?cm?2 and starts increasing after that. Rutherford Backscattering (RBS) reveals the composition of the films and sputtering of ions due to irradiation at higher fluence.  相似文献   

5.
The effects of 200 MeV Au ions irradiation on the structural and magnetic properties of Ni–Mn–Sn ferromagnetic shape memory alloy (FSMA) thin films have been systematically investigated. In order to understand the role of initial microstructure and phase of the film with respect to high energy irradiation, the two types of Ni–Mn–Sn FSMA films having different phases at room temperature were irradiated, one in martensite phase (Ni58.9Mn28.0Sn13.1) and other in austenite phase (Ni50Mn35.6Sn14.4). Transmission electron microscope (TEM) and scanning electron microscope (SEM) images along with the diffraction patterns of X-rays and electrons confirm that martensite phase transforms to austenite phase at a fluence of 6×1012 ions/cm2 and a complete amorphization occurs at a fluence of 3×1013 ions/cm2, whereas ion irradiation has a minimal effect on the austenitic structure (Ni50Mn35.6Sn14.4). Thermo-magnetic measurements also support the above mentioned behaviour of Ni–Mn–Sn FSMA films with increasing fluence of 200 MeV Au ions. The results are explained on the basis of thermal spike model considering the core and halo regions of ion tracks in FSMA materials.  相似文献   

6.
A useful technique of determining the energy levels and the spatial density distributions of multiple electron traps in semi-conductor has been developed using the time-resolved measurement of the Schottky barrier junction capacitance, and this technique has been applied to characterize the electron traps inn-GaAs. In the present technique, the energy levels are determined from single scan of temperature, and the density distributions are calculated from a set of capacitance-voltage relationships. Four traps which lay at 0.39, 0.73, 0.79, and 0.58 eV below the conduction band edge were observed in boat grown or vapor phase epitaxially grown crystals. Many layers which were obtained by a vapor phase epitaxial growth system with N2 carrier gas were measured and it was found that almost all of them include the 0.73 eV and the 0.79 eV trap with the density between 1×1013 and 2×1015 cm−3.  相似文献   

7.
ZnS nanocrytsals of size ∼2.5 nm were prepared by chemical precipitation technique. Pressed pellets of nanostructured ZnS were implanted with He+ ions at doses of 5 × 1014, 1 × 1015 and 5 × 1015 ions/cm2. Raman spectra of both unimplanted and He+ ion implanted samples were recorded with ultraviolet (UV) excitation. LO, 2LO, 2TO, (LO + TA) and (2TO − TA) modes of ZnS were observed in the resonance Raman spectra of the unimplanted nanostructured ZnS samples. In addition, a surface mode was observed at 294 cm−1. With the implantation of He+ ions, the 2TO mode disappeared and 2LO mode became prominent and this observation was attributed to the decrease in band gap of ZnS nanocrytsals due to ion implantation. The exciton–LO phonon coupling strength was determined from the intensity ratio of 2LO to LO modes and it was observed that the exciton–LO phonon coupling strength increases with increase in implantation dose. In the present work, we report for the first time the observation of 2TO mode in the resonance Raman spectrum of nanostructured ZnS and also the modification of exciton–LO phonon coupling strength of semiconductor nanoparticles by ion implantation. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

8.
利用静电自组装技术,以生物大分子材料壳聚糖杂化处理具有稳定结构的CdSe/ZnS核/壳量子点,形成复合多层薄膜. 与薄膜的吸收谱线比较,在375nm飞秒激光激发下测量的量子点的光致发光谱存在Stokes位移. 采用Z扫描技术,利用790nm飞秒激光研究了其三阶非线性吸收和折射特性,发现饱和吸收信号来自CdSe/ZnS量子点,而自聚焦的折射信号则部分来自壳聚糖. 测出多层膜的三阶非线性系数分别是β=6.5×10-6cm/W,n2=1.5×10-10cm2/W. 关键词: CdSe/ZnS量子点 非线性性能 光致发光谱  相似文献   

9.
Silica glasses exposed to steady-state and pulsed irradiation with Fe+ ions are studied using magnetic resonance. The irradiation doses used in experiments are equal to 1 × 1015, 1 × 1016, and 1 × 1017 cm?2. It is found that, under both steady-state and pulsed irradiation conditions, glass samples exposed at a dose of 1 × 1017 cm?2 exhibit a broadband orientation-dependent signal. The shape of inclusions is evaluated under the assumption that the observed spectrum is caused by the ferromagnetic resonance induced in a new phase of metallic iron.  相似文献   

10.
The influence of MeV electron irradiation on the interface states of argon implanted thin oxide MOS samples has been studied by the thermally stimulated current (TSC) method. The oxide thickness of the structures is 18 nm. Two groups of n-type MOS structures non-implanted and implanted with 20 keV Ar+ ions and a dose of 5×1012 cm−2 are examined. Both groups are simultaneously irradiated by 23 MeV electrons with doses of 1.2×1016, 2.4×1016 or 6.0×1016 el/cm2. The energy position and density of the interface states (generated by electron irradiation, ion implantation or both treatments of the samples) are determined. It is shown that MeV electron irradiation decreases the concentration of interface states (like an oxygen-vacancy and di-vacancy) slightly and creates additional interface states (like an impurity-vacancy) at the Si–SiO2 interface of argon implanted MOS structures.  相似文献   

11.
The electrical characteristics of thin TiO2 films prepared by metal–organic chemical vapor deposition grown on a p-type InP substrate were studied. For a TiO2 film of 4.7 nm on InP without and with ammonium sulfide treatment, the leakage currents are 8.8×10−2 and 1.1×10−4 A/cm2 at +2 V bias and 1.6×10−1 and 8.3×10−4 A/cm2 at −2 V bias. The lower leakage currents of TiO2 with ammonium sulfide treatment arise from the improvement of interface quality. The dielectric constant and effective oxide charge number density are 33 and 2.5×1013 cm2, respectively. The lowest mid-gap interface state density is around 7.6×1011 cm−2 eV−1. The equivalent oxide thickness is 0.52 nm. The breakdown electric field increases with decreasing thickness in the range of 2.5 to 7.6 nm and reaches 9.3 MV/cm at 2.5 nm.  相似文献   

12.
A thin film of dilute Fe (0.008)-doped Sb0.95Se0.05 alloy was grown on silicon substrate using the thermal evaporation technique. This film was irradiated with swift heavy ions (SHIs) Ag+15 having 200?MeV energy at ion fluences of 1?×?1012 and 5?×?1012 ions per cm2, respectively. The thickness of the thin film was ~500?nm. We study the effect of irradiation on structural, electrical, surface morphology and magnetic properties of this film using grazing angle XRD (GAXRD), DC resistivity, atomic force microscopy (AFM) and magnetic force microscopy (MFM), respectively. GAXRD suggests that no significant change is observed in this system due to SHI irradiation. The average crystallite size increases with fluence, whereas the AFM image shows the rms roughness decreases due to irradiation with respect to the un-irradiated thin film. The MFM image shows that the magnetic interaction in irradiated film decreases due to the irradiation effect. Although the un-irradiated sample shows metal to semiconducting transition, but after irradiation with fluence of 5?×?1012 ions per cm2, the sharpness of the metal to semiconducting phase transition is observed to increase dramatically at ~300?K. This characteristic of the thin film makes it a promising candidate for an electrical switching device after irradiation.  相似文献   

13.
为了提高负电子亲和势(NEA)GaN光电阴极的量子效率,利用金属有机化合物化学气相淀积(MOCVD)外延生长了梯度掺杂反射式GaN光电阴极,其掺杂浓度由体内到表面依次为1×1018 cm-3,4×1017 cm-3,2×1017 cm-3和6×1016 cm-3,每个掺杂浓度区域的厚度约为45 nm,总的厚度为180 nm.在超高真 关键词: NEA GaN光电阴极 梯度掺杂 量子效率 能带结构  相似文献   

14.
Feroz A. Mir 《哲学杂志》2013,93(3):331-344
PrFe0.7Ni0.3O3 thin films (thickness ~ 200 nm) were prepared by pulsed laser ablation technique on LaAlO3 substrate. These films were irradiated with 200?MeV Ag15+ ions at various fluencies, ranging from 1 × 1011 to 1 × 1012 ions/cm2. These irradiated thin films were characterized by using X-ray diffraction, dc conductivity, dc magnetization and atomic force microscopy. These films exhibit orthorhombic structure and retain it even after irradiations. The crystallite size (110–137?nm), micro strain (1.48 × 10?2–1.75 × 10?2 line?2?m?4) and dislocation density (79.7 × 1014–53.2 × 1014 line/m2) vary with ion fluencies. An enhancement in resistivity at certain fluence and then a decrease in its value (0.22175–0.21813?Ω?cm) are seen. A drastic change in observed magnetism after ion irradiation is seen. With ion irradiation, an increase in surface roughness, due to the formation of hillocks and other factors, is observed. Destruction of magnetic domains after irradiation can also be visualized with magnetic force microscopy and is in close agreement with magnetization data. The impact on various physical properties in these thin films after irradiation indicates a distortion in the lattice structure and consequently on single-particle band width caused by stress-induced defects.  相似文献   

15.
We report the preparation of multiferroic BiFeO3 thin films on ITO coated glass substrates through sol-gel spin coating method followed by thermal annealing and their modification by swift heavy ion (SHI) irradiation. X-ray diffraction and Raman spectroscopy studies revealed amorphous nature of the as deposited films. Rhombohedral crystalline phase of BiFeO3 evolved on annealing the films at 550°C. Both XRD and Raman studies indicated that SHI irradiation by 200 MeV Au ions result in fragmentation of particles and progressive amorphization with increasing irradiation fluence. The average crystallite size estimated from the XRD line width decreased from 38 nm in pristine sample annealed at 550°C to 29 nm on irradiating these films by 200 MeV Au ions at 1 × 1011 ions cm−2. Complete amorphization of the rhombohedral BiFeO3 phase occurs at a fluence of 1 × 1012 ions.cm−2. Irradiation by another ion (200 MeV Ag) had the similar effect. For both the ions, the electronic energy loss exceeds the threshold electronic energy loss for creation of amorphized latent tracks in BiFeO3.  相似文献   

16.
AlN with different thicknesses were grown as interlayers (ILs) between GaN and p-type Al0.15Ga0.85N/GaN superlattices (SLs) by metal organic vapor phase epitaxy (MOVPE). It was found that the edge-type threading dislocation density (TDD) increased gradually from the minimum of 2.5×109?cm?2 without AlN IL to the maximum of 1×1010?cm?2 at an AlN thickness of 20 nm, while the screw-type TDD remained almost unchanged due to the interface-related TD suppression and regeneration mechanism. We obtained that the edge-type dislocations acted as acceptors in p-type Al x Ga1?x N/GaN SLs, through the comparison of the edge-type TDD and hole concentration with different thicknesses of AlN IL. The Mg activation energy was significantly decreased from 153 to 70?meV with a?10-nm AlN IL, which was attributed to the strain modulation between AlGaN barrier and GaN well. The large activation efficiency, together with the TDs, led to the enhanced hole concentration. The variation trend of Hall mobility was also observed, which originated from the scattering at TDs.  相似文献   

17.
Shabir Ahmad  K. Asokan 《哲学杂志》2015,95(12):1309-1320
Present work focuses on the effect of swift heavy ion (SHI) irradiation of 100 MeV F7+ ions by varying the fluencies in the range of 1 × 1012 to 1 × 1013 ions/cm2 on the morphological, structural and optical properties of polycrystalline thin films of Ga10Se90-xAlx (x = 0, 5). Thin films of ~300 nm thickness were deposited on cleaned Al2O3 substrates by thermal evaporation technique. X-ray diffraction pattern of investigated thin films shows the crystallite growth occurs in hexagonal phase structure for Ga10Se90 and tetragonal phase structure for Ga10Se85Al5. The further structural analysis carried out by Raman spectroscopy and scanning electron microscopy verifies the defects or disorder of the investigated material increases after SHI irradiation. The optical parameters absorption coefficient (α), extinction coefficient (K), optical band gap (Eg) and Urbach’s energy (EU) are determined from optical absorption spectra data measured from spectrophotometry in the wavelength range 200–1100 nm. It was found that the values of absorption coefficient and extinction coefficient increase while the value of optical band gap decreases with the increase in ion fluence. This post irradiation change in the optical parameters was interpreted in terms of bond distribution model.  相似文献   

18.
ZnO thin films, irradiated by 80 MeV Ni+ ions, were analysed with the help of different characterization techniques like X-ray diffraction, optical absorption, transmission, photoluminescence (PL), electrical resistivity, photosensitivity (PS) and thermally stimulated current (TSC) measurements. Crystallinity and absorption edge were hardly affected by irradiation. PL spectrum of pristine sample showed a broad peak at 517 nm, whereas irradiated film had two emissions at 517 and 590 nm. Intensity ratio between these two emissions (I517/I590) decreased with the fluence, and finally at a fluence of 3×1013 ions/cm2, the emission at 517 nm completely disappeared. Electrical resistivity of the sample irradiated with a fluence of 1×1013 ions/cm2 drastically increased. However, on increasing the fluence to 3×1013 ions/cm2, resistivity decreased, probably due the onset of hopping conduction through defects. PS also decreased due to irradiation. TSC measurements on pristine sample could reveal only one defect level at 0.6 eV, due to interstitia1 zinc (ZnI). But, irradiation at a fluence of 1×1012 ions/cm2, resulted in three different defect levels as per TSC studies. Interestingly, the sample irradiated at a fluence of 3×1013 ions/cm2 had only one defect level corresponding to a deep donor. The possible origin of these defect levels is also discussed in the paper.  相似文献   

19.
ABSTRACT

Thermally grown SiO2 thin films on a silicon substrate implanted with 100?keV silicon negative ions with fluences varying from 1?×?1015 to 2?×?1017 ions cm?2 have been investigated using Electron spin resonance, Fourier transforms infrared and Photoluminescence techniques. ESR studies revealed the presence of non-bridging oxygen hole centers, E′-centers and Pb-centers at g-values 2.0087, 2.0052 and 2.0010, respectively. These vacancy defects were found to increase with respect to ion fluence. FTIR spectra showed rocking vibration mode, stretching mode, bending vibration mode, and asymmetrical stretching absorption bands at 460, 614, 800 and 1080?cm?1, respectively. The concentrations of Si–O and Si–Si bonds estimated from the absorption spectra were found to vary between 11.95?×?1021 cm?3 and 5.20?×?1021 cm?3 and between 5.90?×?1021 cm?3 and 3.90?×?1021 cm?3, respectively with an increase in the ion fluence. PL studies revealed the presence of vacancies related to non-bridging oxygen hole centers, which caused the light emission at a wavelength of 720?nm.  相似文献   

20.
High-quality ZnO thin films were grown on a-plane sapphire substrates by plasma-assisted molecular beam epitaxy. X-ray diffraction and transmission electron microscopy reveal that the ZnO films have high structural quality and an atomically sharp ZnO/Al2O3 interface. The full width at half maximum values of the 0002 and $30\bar{3}2$ ZnO ω-rocking curves are 467.8 and 813.5 arc sec for a 600 nm thick ZnO film. A screw dislocation density of 4.35×108 cm?2 and an edge dislocation density of 3.38×109 cm?2 are estimated by X-ray diffraction. The surface of the ZnO epilayers contains hexagonal pits, which can be observed in the Zn-polar ZnO. The films have a resistivity of 0.119 Ω?cm, an electron concentration of 6.85×1017 cm?3, and a mobility of 76.5 cm2?V?1?s?1 at room temperature. Low temperature photoluminescence measurements show good optical properties comparable to ZnO single crystals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号