首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Intercalation of graphene on Ir (111) with Sm atoms is studied by methods of thermal desorption spectroscopy and thermionic emission. It is shown that adsorption of samarium at T = 300 K on graphene to concentrations of N ≤ 6 × 1014 atoms cm–2 followed by heating of the substrate leads to practically complete escape of adsorbate underneath the graphene layer. At N > 6 × 1014 atoms cm–2 and increasing temperature, a fraction of adsorbate remains on graphene in the form of two-dimensional “gas” and samarium islands and are desorbed in the range of temperatures of 1000–1200 K. Samarium remaining under the graphene is desorbed from the surface in the temperature range 1200–2150 K. Model conceptions for the samarium–graphene–iridium system in a wide temperature range are developed.  相似文献   

2.
Structure of smooth hydrocarbon CD x films with a high deuterium ratio x ~ 0.5 redeposited from T-10 tokamak D-plasma discharges (NRC Kurchatov Institute, Moscow) has been studied. For the first time, small and wide angle X-ray scattering technique using synchrotron radiation and neutron diffraction have been employed. A fractal structure of CD x films is found to consist of mass-fractals with rough border, surface fractals (with rough surface), plane scatterers and linear chains forming a branched and highly cross-linked 3D carbon network. The found fractals, including sp2 clusters, are of typical size ~1.60 nm. They include a C13 fragment consisting of three interconnected aromatic rings forming a minimal fractal sp2 aggregate 9 × C13. These graphene-like sp2 clusters are interconnected and form a 3D lattice which can be alternatively interpreted as a highly defective graphene layer with a large concentration of vacancies. The unsaturated chemical bonds are filled with D, H atoms, linear sp2 C=C, C=O, and sp3 structural elements like C-C, C-H(D), C-D2,3, C-O, O-H, COOH, C x D(H) y found earlier from the infrared spectra of CD x films, which are binding linear elements of a carbon network. The amorphous structure of CD x films has been confirmed by the results of earlier fractal structure modeling, as well as by researches with X-ray photoelectron spectroscopy which allow finding a definite similarity with the electron structure of their model analogues — polymeric a-C:H and a-C:D films with a disordered carbon network consisting of atoms in sp3 + sp2 states.  相似文献   

3.
Patterns of energy transfer and accumulation in elastic interactions between Nb+ ions (E0 = 0.1–3 keV) and atoms of a Nb single crystal are studied by means of molecular dynamics. Spatial distributions of the recoil energy in the bulk of the crystal are calculated. It is shown that recoil energy is accumulated in the region of the densest packing of atoms, mainly in the outermost (N = 1–3) monolayers of the crystal. The effect the orientation of the target with respect to the beam has on the recoil energy and its spatial distributions is determined.  相似文献   

4.
The generation regimes in a pulsed Nd:YAG laser with transverse LED pumping and multiloop self-pumped phase-conjugate cavity on the gain gratings are studied. The differential efficiency of laser is 27% in the free-running regime at a pulse energy of up to 1 J and quality parameter M 2 of no greater than 1.5. The pulse energy under passive Q-switching is no less than 60% of the pulse energy in the free-running regime at the same beam quality. The generation of the narrow-band radiation is demonstrated. A generation band of no greater than 1.2 GHz corresponds to the primary single-frequency high-power laser pulse in the free-running mode under conditions for self-Q-switching on the gain gratings. When additional elements (F 2 ? :LiF and Cr4+:YAG crystals) are introduced in the optical scheme of the phase-conjugate cavity, similar narrowband single-mode generation is observed in the passive Q-switching regime as a pulse train or monopulse. The laser pulse power is up to 2 MW at a pulse duration of 20 ns.  相似文献   

5.
Atomic transitions of the 39K potassium isotope in strong (up to 1 kG) longitudinal and transverse magnetic fields have been studied with a high spectral resolution. It has been shown that crossover resonances are almost absent in the saturated absorption spectrum of potassium vapors in a 30-μm-thick microcell. This, together with the small spectral width of atomic transitions (~30 MHz), allows one to use the saturated absorption spectrum for determining frequencies and probabilities of individual transitions. Among the alkali metals, potassium atoms have the smallest magnitude of the hyperfine splitting of the lower level. This allows one to observe the break of the coupling between the electronic and nuclear angular momentums at comparatively low magnetic fields B > 500 G, i.e., to implement the hyperfine Paschen–Back regime (HPB). In the HPB regime, four equidistantly positioned transitions with the same amplitude are detected in circularly polarized light (σ+). In linearly polarized light (π) at the transverse orientation of the magnetic field, the spectrum consists of eight lines which are grouped in two groups each of which consists of four lines. Each group has a special distinguished G-transition and the transition that is forbidden in the zero magnetic field. In the HPB regime, the probabilities of transitions in a group and derivatives of their frequency shifts with respect to the magnetic field asymptotically tend to magnitudes that are typical for the aforesaid distinguished G-transition. Some practical applications for the used microcell are mentioned.  相似文献   

6.

It is shown that during low-temperature (300–500 K) intercalation of sodium atoms into thin multilayer graphene and graphite films on rhenium the first graphene layer plays the role of a trap to which atoms coming on the surface diffuse through a graphite film. The intercalation phase of the interlayer space in the graphite bulk is actively filled at a sodium atoms concentration under the first graphene layer close to the maximum possible (2 ± 0.5) × 1014 cm–2. This phase capacity is proportional to the graphite film thickness that can be varied in this work from one graphene layer to ~50 atomic layers. The diffusion energy E d of Na atoms through the graphite film was estimated to be E d ≈ 1.4 eV.

  相似文献   

7.
Layers formed by the ion-beam-assisted deposition of cadmium, zinc, and aluminum onto the surface of carbon and stainless steels to protect aluminum and its alloys from corrosion in the case of their contact with steel parts are investigated. The protective layers are created via ion-beam-assisted deposition, in which metal deposition and mixing of the deposited layer with the substrate surface (this process is implemented by accelerated (U = 5 kV) ions of the same metal) occurs, respectively, from a neutral vapor fraction and the vacuum arc plasma of a pulsed electric-arc ion source. The morphology and composition of the generated surface layers are studied by means of scanning electron microscopy, electron-probe microanalysis, and Rutherford backscattering spectrometry. The layer composition is revealed to include atoms of the deposited metal, the substrate material, oxygen, and carbon. The layer thickness varies from ~50 to 80 nm, and the deposited metal content of the layers is ~(1.0–3.5) × 1017 atom/cm2. Corrosion tests of the aluminum and its alloy in contact with the materials under study confirm the efficiency of the ion-beam modification of steel surfaces.  相似文献   

8.
The energy redistribution in barrier-discharge Xe2 excilamp in various excitation regimes is investigated using the pressure jump method. Analytic expressions are derived for calculating power W dissipated in the excilamp discharge plasma in the form of heat and for calculating total discharge heat power PT spent on heating the excilamp. It is shown that the mechanism of the thermal energy dissipation gradually changes upon an increase in the xenon pressure in the excilamp. The conditions for generating the maximal radiation power of the excilamp are determined. It is shown that the maximum of the average radiation power is attained for an excitation pulse duration of 500 ns and the maximal pulse power is attained for a pulse duration of 100 ns. It is found that the optimal operation regime for the excilamp corresponds to the maximal values of the PTW difference.  相似文献   

9.
The process by which atoms are ionized as they are sputtered from a metal surface has been analyzed both theoretically and experimentally. In the theoretical part the expressions for ionization coefficient R+ of atoms having the ionization energy much larger than the metal work function have been derived using a molecular orbital method. The effect of the level crossing was estimated in an approximate way. In the experimental part the SIMS experiments on clean Ni and Al surfaces and on Ni surface covered with a submonolayer of adsorbed K, Na and Al are reported. It has been found and it is for the first time reported that the energy distribution of ions sputtered from a submonolayer of adatoms is independent of energy (200–2500 eV) and mass (Ar+ Xe+ of incident ions and depends only upon the adsorption energy of the adatom. The energy distribution of ions sputtered from bulk samples has been found dependent on the primary ion energy. The measurement of the absolute value of R+ has shown that there is a strong correlation between the number of the adatom valence d-electrons and the value of R+, the value of R+ being smaller for atoms with more d-electrons. These experimental data have been compared with the theoretical expressions and the important role of the mechanism which takes into account the bending of the adatom energy level has been assessed.  相似文献   

10.
A compact high-peak-power, high-repetition-rate burst mode laser is achieved by an acousto-optical Q-switched Nd:YVO4 1064 nm laser directly pumped at 878.6 nm. Pulse trains with 10–100 pulses are obtained using acousto-optical Q-switch at repetition rates of 10–100 kHz under a pulsed pumping with a 1 ms duration. At the maximum pump energy of 108.5 mJ, the pulse energy of 10 kHz burst mode laser reaches 44 mJ corresponding to a single pulse energy of 4.4 mJ and an optical-to-optical efficiency of 40.5 %.The maximum peak power of ~468.1 kW at 10 kHz is obtained with a pulse width of 9.4 ns. The beam quality factor is measured to be M 2 ~1.5 and the pulse jitter is estimated to be less than 1 % in both amplitude and time region.  相似文献   

11.
In this paper, we demonstrate that laser vaporization of metals in the presence of a small concentration of butadiene vapor leads to the polymerization of butadiene and incorporation of the metal nanoparticles within the polymer matrix. The metal nanocomposites are characterized by electron microscopy, X-ray diffraction and EDX. The results from high pressure mass spectrometry indicate that multiple additions of butadiene molecules on the metal cations Fe+, Ni+ and Pt+, generated by laser vaporization, take place at room temperature thus providing an efficient means of initiating further polymerization reactions. The Pt+ reactions show extensive fragmentations and elimination steps generating hydrocarbon ions. The laser vaporization/polymerization method provides the ability to encapsulate several different metals or metal oxides which undoubtedly will play a significant role in tuning the various properties of the polymer composites.  相似文献   

12.
The paper represents results on numerical investigation of flow and heat transfer between two isothermal vertical plates under laminar natural convection. A system of complete Navier–Stokes equations is solved for a two-dimensional gas flow between the plates along with additional rectangular regions (connected to inlet and outlet sections), whose characteristic sizes are much greater than the spacing between the plates. The calculations were performed over very wide ranges of Rayleigh number Ra = 10 ÷ 105 and a relative channel length AR = L/w = 1 ÷ 500. The influence of the input parameters on the gas-dynamic and thermal structure of thermogravitational convection, the local and mean heat transfer, and also the gas flow rate between the plates (convective draft. We determined sizes of the regions and regime parameters when the local heat flux on the walls tends to zero due to the gas temperature approach to the surface temperature. It is shown that the mean heat transfer decreases as the relative channel length AR grows, whereas the integral gas flow rate (convective draft) and Reynolds number in the channel Re = 2wUm/ν increase. The use of a modified Rayleigh number Ra* = Ra · (w/L) (Elenbaas number) leads to generalization of calculation data on mean heat transfer. These data are in good agreement with the correlations for heat transfer [1, 2] and gas flow rate [3]. The reasons of variation of the data in the range of low Rayleigh numbers are discussed in detail.  相似文献   

13.
A single-crystal CaF2 (111) was irradiated with single and multiple laser (Ti:sapphire, 800 nm, 25 fs) shots at fluences ranging from 0.25 to 1.5 J cm?2. In this fluence regime, a single laser pulse usually leads to typical bump-like features ranging from 200 nm to 1.5 μm in diameter and 10–50 nm in height. These bumps are related to compressive stresses due to a pressure build-up induced by fast laser heating and their subsequent relaxation. When CaF2 is irradiated with successive (in our case 20) shots at a laser fluence of 1.5 J cm?2, nanocavities at the top of the microbumps are observed. The formation of these nanocavities is regarded as an explosion and is attributed to the explosive expansion generated by shock waves due to laser-induced plasma after the nonlinear absorption of the laser energy by the material. Such kinds of surface structures at the nanometre scale could be attractive for nanolithography.  相似文献   

14.
The growth of small tellurium clusters in helium and the influence of a metal impurity (dysprosium atoms) on the cluster size distribution are investigated in a double laser vaporization source. A model describing the role of the carrier gas as collision partner is presented, emphasizing the crucial influence of the gas pressure on cluster formation. Changes in cluster reactivity due to dysprosium addition are discussed in terms of ionic structures Dy 3 +(Te N)3 - containing a radical electron. Received 28 November 2000  相似文献   

15.
Density functional theory computations were performed to investigate hydrogen adsorption in metaldecorated defective BN nanosheets. The binding energies of Ca and Sc on pristine BN nanosheets are much lower than the corresponding cohesive energies of the bulk metals; however, B vacancies in BN nanosheets enhance the binding of Ca and Sc atoms dramatically and avoid the clustering of the metal atoms on the surface of BN nanosheets. Ca and Sc strongly bind to defective BN nanosheets due to charge transfer between metal atoms and BN nanosheets. Sc-decorated BN nanosheets with B vacancies demonstrate promising hydrogen adsorption performances with a hydrogen adsorption energy of ?0.19~ ?0.35 eV/H2.  相似文献   

16.
The yield of neutrons from the thermonuclear-fusion reaction D(d, n)3He induced in a thin skin layer by the interaction of a high-intensity laser pulse of picosecond duration with thin TiD2 foils is calculated. A multiple ionization of titanium atoms at the leading edge of the laser pulse is considered. The heating of free electrons proceeds via induced inverse bremsstrahlung in elastic electron scattering on multiply charged titanium ions. The electron temperature is calculated. It proves to be about 10 keV at the laser-pulse intensity of 5×1018 W/cm2 at the peak. The neutron yield is estimated at 104 per laser pulse. These results are in qualitative agreement with experimental data.  相似文献   

17.
We have shown that for quantum wells placed close to the stress-free surface of the semiconductor heterostructure, the energy relaxation rate of two-dimensional electrons interacting with acoustic phonons at low temperatures (Bloch–Grüneisen regime) is changed considerably in comparison with that of a two-dimensional electron gas placed in a bulk of semiconductor. The relaxation rate is enhanced in the case of a semiconductor–vacuum system and is suppressed in the case of the surface covered by a thin metal film. The enhanced energy loss is caused by additional scattering at localized and reflected acoustic waves, and the decrease appears due to suppression of piezoelectric scattering in the vicinity of the metal.  相似文献   

18.
We study thermal-physical characteristics of nano-sized amorphous tungsten and of its oxide. It is shown that a nano-size amorphous metal gets into a nano-size crystalline state after heating up to temperatures much lower than the half-temperature of melting, which is typical for all nano-size amorphous materials. Phase transition of amorphous nano-size WO2 into crystalline state occurs in the temperature range 350–520°C, while the same transition in case of W takes place in the range 1000–1370°C. The energy released at crystallization of nano-size amorphous metal amounts to 170±25 J/g coinciding practically with the value of specific melting heat of usual tungsten. Such a high additional energy of nano-size amorphous metals above the energy of nano-size crystalline metals is their main peculiarity which widens essentially the range of their practical applications.  相似文献   

19.
Experimental evidence has been obtained for the hydrodynamic flow of a 2D gas of hydrogen atoms adsorbed on the surface of liquid helium. The observed flow manifestations are consistent with the concepts of the quantum hydrodynamics of the helium surface. This circumstance allows both investigation of the interaction of 2D hydrogen with ripplons and surface 3He quasiparticles and possible future observation of the superfluidity of the 2D Bose gas of hydrogen atoms. The experimental results on thermal compression make it possible to estimate the characteristic times of the transfer of longitudinal momentum between the subsystems of hydrogen and 3He atoms bound to the surface (τH3), as well as from ripplons to the substrate (τR). The value τH3 ~ 4 × 10?8 s agrees with a value calculated using the mean-field parameter U30 for the interaction of hydrogen atoms with the ground surface state of 3He. At the same time, τR is more than an order of magnitude shorter than the value obtained in experiments by Mantz et al. Phys. Rev. Lett. 44, 66 (1980) [Erratum: Phys. Rev. Lett. 44, 1094 (1980)]. This discrepancy can be attributed to the dependence of the ripplon momentum relaxation rate on the substrate roughness scale.  相似文献   

20.
Y. Zhu  L.D. Schmidt 《Surface science》1983,129(1):107-122
Temperature programmed desorption (TPD) of CO is used to determine surface areas, binding states, and changes upon oxidation for 10–1000 Å particles of Pt, Rh, and Pt-Rh alloy on amorphous SiO2. A low area sample configuration is used to obtain rapid and uniform heating and cooling in an ultra-high vacuum system. It is shown that both metals exhibit a higher CO binding state for small particles, but, as particle size increases, this state disappears and is replaced by a more weakly bound state. These states are suggested to be associated with (111) and higher surface free energy planes on these surfaces, heating Rh above 700 K in O2 at 10?6 Torr produces an oxide on which the CO saturation coverage is at least a factor of 10 lower than on the reduced surface. For Pt, oxidation produces only a small decrease in CO coverage, although the binding energy of CO increases on the oxygen treated surface. The difference in desorption temperatures for CO on Pt and Rh is consistent with previous experiments which show that an oxidation-reduction cycle produces a surface layer which is enriched in Rh and that the oxidized alloy contains no Pt atoms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号