首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A functional transformation between solutions of the one-dimensional nonlinear Schrödinger equation with time- and coordinate-dependent coefficients and solutions of the conventional nonlinear Schrödinger equation (NSE) is constructed. Exact solutions of the NSE with a homogeneous time-dependent external electric field and the NSE with oscillator potential are obtained.  相似文献   

2.
We investigate universal time-dependent exact deformations of Schrödinger geometry. We present 1) scale invariant but non-conformal deformation, 2) non-conformal but scale invariant deformation, and 3) both scale and conformal invariant deformation. All these solutions are universal in the sense that we could embed them in any supergravity constructions of the Schrödinger invariant geometry. We give a field theory interpretation of our time-dependent solutions. In particular, we argue that any time-dependent chemical potential can be treated exactly in our gravity dual approach.  相似文献   

3.
Darboux transformations and a factorization procedure are presented for a system of coupled finite-difference Schrödinger equations. The conformity between generalized Darboux transformations and the factorization method is established. Factorization chains and consequences of Darboux transformations are obtained for a system of coupled discrete Schrödinger equations. The proposed approach permits constructing a new series of potential matrices with known spectral characteristics for which coupled-channel discrete Schrödinger equations have exact solutions.  相似文献   

4.
We study the noncoInmutative nonrelativistic quantum dynamics of a neutral particle, which possesses an electric qaudrupole moment, in the presence of an external magnetic field. First, by intro ducing a shift for the magnetic field, we give the Schrodinger equations in the presence of an external magnetic field both on a noncommutative space and a noncomlnutative phase space, respectively. Then by solving the SchrSdinger equations both on a noneommutative space and a noncommutative phase space, we obtain quantum phases of the electric quadrupole moment, respectively. Wc demonstrate that these phases are geometric and dispersive.  相似文献   

5.
We study the noncommutative nonrelativistic quantum dynamics of a neutral particle, which possesses an electric multipole moment, in the presence of an external magnetic field. First, by introducing a shift for the magnetic field we give the Schrödinger equations in the presence of an external magnetic field both on a noncommutative space and a noncommutative phase space, respectively. Then by solving the Schrödinger equations, we obtain quantum phases of the electric multipole moment both on a noncommutative space and a noncommutative phase space. We demonstrate that these phase are geometric and dispersive.  相似文献   

6.
We construct an explicit solution of the Cauchy initial value problem for the time-dependent Schrödinger equation for a charged particle with a spin moving in a uniform magnetic field and a perpendicular electric field varying with time. The corresponding Green function (propagator) is given in terms of elementary functions and certain integrals of the fields with a characteristic function, which should be found as an analytic or numerical solution of the equation of motion for the classical oscillator with a time-dependent frequency. We discuss a particular solution of a related nonlinear Schrödinger equation and some special and limiting cases are outlined.  相似文献   

7.
The imprints left by quantum mechanics in classical (Hamiltonian) mechanics are much more numerous than is usually believed. We show that the Schrödinger equation for a nonrelativistic spinless particle is a classical equation which is equivalent to Hamilton’s equations. Our discussion is quite general, and incorporates time-dependent systems. This gives us the opportunity of discussing the group of Hamiltonian canonical transformations which is a non-linear variant of the usual symplectic group.  相似文献   

8.
We consider Darboux transformations for the derivative nonlinear Schrödinger equation. A new theorem for Darboux transformations of operators with no derivative term are presented and proved. The solution is expressed in quasideterminant forms. Additionally, the parabolic and soliton solutions of the derivative nonlinear Schrödinger equation are given as explicit examples.  相似文献   

9.
This paper presents a fractional Schrödinger equation and its solution. The fractional Schrödinger equation may be obtained using a fractional variational principle and a fractional Klein-Gordon equation; both methods are considered here. We extend the variational formulations for fractional discrete systems to fractional field systems defined in terms of Caputo derivatives to obtain the fractional Euler-Lagrange equations of motion. We present the Lagrangian for the fractional Schrödinger equation of order α. We also use a fractional Klein-Gordon equation to obtain the fractional Schrödinger equation which is the same as that obtained using the fractional variational principle. As an example, we consider the eigensolutions of a particle in an infinite potential well. The solutions are obtained in terms of the sines of the Mittag-Leffler function.  相似文献   

10.
《Physics letters. A》1999,251(5):289-293
We study the time evolution of the Heisenberg spin system in a time-dependent magnetic field. By a unitary transformation we obtain the formal exact solutions of the Schrödinger equation for this system. Based on the formal exact solutions, the Aharonov-Anandan phases are worked out.  相似文献   

11.
In this article the defining equations are constructed for the group of transformations of independent variables, with respect to which the normal parabolic equation of second order is invariant. This group is calculated for the time-dependent Schrödinger equation. The symmetry of the parabolic equation is investigated.  相似文献   

12.
The representation of the Schrödinger equation in the form of a classical Hamiltonian system makes it possible to construct a unified perturbation theory that is based on the theory of canonical transformations and covers both classical and quantum mechanics. Also, the closeness of the exact and approximate solutions of the Schrödinger equation can be approximately estimated with such a representation.  相似文献   

13.
《Physics letters. A》2020,384(9):126201
In this paper, we report a more general class of nondegenerate soliton solutions, associated with two distinct wave numbers in different modes, for a certain class of physically important integrable two component nonlinear Schrödinger type equations through bilinearization procedure. In particular, we consider coupled nonlinear Schrödinger (CNLS) equations (both focusing as well as mixed type nonlinearities), coherently coupled nonlinear Schrödinger (CCNLS) equations and long-wave-short-wave resonance interaction (LSRI) system. We point out that the obtained general form of soliton solutions exhibit novel profile structures than the previously known degenerate soliton solutions corresponding to identical wave numbers in both the modes. We show that such degenerate soliton solutions can be recovered from the newly derived nondegenerate soliton solutions as limiting cases.  相似文献   

14.
In this study, the generalized \(\tan (\phi /2)\)-expansion method and He’s semi-inverse variational method (HSIVM) are applied to seek the exact solitary wave solutions for the resonant nonlinear Schrödinger equation with time-dependent coefficients. Using these methods, we investigate exact solutions for the nonlinear resonant Schrödinger equation with time-dependent coefficients two forms of nonlinearity, including power and dual-power law nonlinearity. Moreover, many new analytical exact solutions are obtained which are expressed by hyperbolic solutions, trigonometric solutions, and rational solutions. In addition, we obtained the bright soliton by HSIVM. These methods are powerful, efficient and those can be used as an alternative to establishing new solutions of different types of differential equations in mathematical physics and engineering.  相似文献   

15.
We establish the supersymmetry formalism for time-dependent Schrödinger equations with effective mass and show that the corresponding supersymmetric transformations are equivalent to effective mass Darboux transformations  相似文献   

16.
Weakly nonlinear stability of interfacial waves propagating between two electrified inviscid fluids influenced by a vertical periodic forcing and a constant horizontal electric field is studied. Based on the method of multiple-scale expansion for a small-amplitude periodic force, two parametric nonlinear Schrödinger equations with complex coefficients are derived in the resonance cases. A standard nonlinear Schrödinger equation with complex coefficients is derived in the nonresonance case. A temporal solution is carried out for the parametric nonlinear Schrödinger equation. The stability analysis is discussed both analytically and numerically.  相似文献   

17.
Abstract

The Painlevé-test has been applied to checking the integrability of nonlinear PDEs, since similarity solutions of many soliton equations satisfy the Painlevé equation. As is well known, such similarity solutions can be obtained by the infinitesimal transformation, that is, the classical similarity analysis, and also the dimension of the PDEs can be reduced.

In this paper, the KdV, the mKdV, and the nonlinear Schrödinger equations are considered and are transformed into equations with loss and/or nonuniformity by transformations constructed on a basis of the local similarity variables. The transformations include the Bäcklund and the Galilei invariant ones. It should be noticed that the approach is applicable to other PDEs and for nonlocal similarity variables.  相似文献   

18.
In this paper we consider a one-dimensional non-linear Schrödinger equation with a periodic potential. In the semiclassical limit we prove the existence of stationary solutions by means of the reduction of the non-linear Schrödinger equation to a discrete non-linear Schrödinger equation. In particular, in the limit of large nonlinearity strength the stationary solutions turn out to be localized on a single lattice site of the periodic potential. A connection of these results with the Mott insulator phase for Bose–Einstein condensates in a one-dimensional periodic lattice is also discussed.  相似文献   

19.
We construct explicit Darboux transformations of arbitrary order for a class of generalized, linear Schrödinger equations. Our construction contains the well-known Darboux transformations for Schrödinger equations with position-dependent mass, Schrödinger equations coupled to a vector potential and Schrödinger equations for weighted energy.  相似文献   

20.
We investigate the non-relativistic Schrödinger and Pauli-Dirac oscillators in noncommutative phase space using the five-dimensional Galilean covariant framework. The Schrödinger oscillator presented the correct energy spectrum whose non isotropy is caused by the noncommutativity with an expected similarity between this system and the particle in a magnetic field. A general Hamiltonian for the 3-dimensional Galilean covariant Pauli-Dirac oscillator was obtained and it presents the usual terms that appears in commutative space, like Zeeman effect and spin-orbit terms. We find that the Hamiltonian also possesses terms involving the noncommutative parameters that are related to a type of magnetic moment and an electric dipole moment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号