首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
We review some results in the theory of non-relativistic quantum unstable systems. We account for the most important definitions of quantum resonances that we identify with unstable quantum systems. Then, we recall the properties and construction of Gamow states as vectors in some extensions of Hilbert spaces, called Rigged Hilbert Spaces. Gamow states account for the purely exponential decaying part of a resonance; the experimental exponential decay for long periods of time physically characterizes a resonance. We briefly discuss one of the most usual models for resonances: the Friedrichs model. Using an algebraic formalism for states and observables, we show that Gamow states cannot be pure states or mixtures from a standard view point. We discuss some additional properties of Gamow states, such as the possibility of obtaining mean values of certain observables on Gamow states. A modification of the time evolution law for the linear space spanned by Gamow shows that some non-commuting observables on this space become commuting for large values of time. We apply Gamow states for a possible explanation of the Loschmidt echo.  相似文献   

3.
In the framework of the rigged Hilbert space, unstable quantum systems associated with first-order poles of the analytically continued S-matrix can be described by Gamow vectors which are generalized vectors with exponential decay and a Breit-Wigner energy distribution. This mathematical formalism can be generalized to quasistationary systems associated with higher-order poles of the S-matrix, which leads to a set of Gamow vectors of higher order with a non-exponential time evolution. One can define a state operator from the set of higher-order Gamow vectors which obeys the exponential decay law. We shall discuss to what extent the requirement of an exponential time evolution determines the form of the state operator for a quasistationary microphysical system associated with a higher-order pole of the S-matrix. Dedicated to Professor L. P. Horwitz on the occasion of his 65th birthday, October 14, 1995.  相似文献   

4.
The formalism of quantum systems with diagonal singularities is applied to describe scattering processes. Well-defined states are obtained for infinite time, which are related to a “weak form” of intrinsic irreversibility. Real and complex generalized spectral decompositions of the Liouville-von Neumann superoperator are computed. The physical meaning of “Gamow states” is discussed.  相似文献   

5.
We derive Gamow vectors fromS-matrix poles of higher multiplicity in analogy to the Gamow vectors describing resonances from first-order poles. With these vectors we construct a density operator that describes resonances associated with higher order poles that obey an exponential decay law. It turns out that this operator formed by these higher order Gamow vectors has a unique structure.  相似文献   

6.
The formulation of quantum mechanics in rigged Hilbert spaces is used to study the vector states for resonance states or Gamow vectors. An important part of the work is devoted to the construction of Gamow vectors for resonances that appear as multiple poles on the analytic continuation of theS-matrix,S(E). The kinematical behavior of these vectors is also studied. This construction allow for generalized spectral decompositions of the Hamiltonian and the evolutionary semigroups, valid on certain locally convex spaces. Also a first attempt is made to define the resonance states as densities in an extension of the Liouville space, here called rigged Liouville space.  相似文献   

7.
Results from the Lax-Phillips Scattering Theory are used to analyze quantum mechanical scattering systems, in particular to obtain spectral properties of their resonances which are defined to be the poles of the scattering matrix. For this approach the interplay between the positive energy projection and the Hardy-space projections is decisive. Among other things it turns out that the spectral properties of these poles can be described by the (discrete) eigenvalue spectrum of a so-called truncated evolution, whose eigenvectors can be considered as the Gamow vectors corresponding to these poles. Further an expansion theorem of the positive Hardy-space part of vectors Sg (S scattering operator) into a series of Gamow vectors is presented.  相似文献   

8.
A formalism to evaluate the resonant states produced by two particles moving outside a closed shell core is presented. The two-particle states are calculated by using a single-particle representation consisting of bound states, Gamow resonances and scattering states in the complex energy plane (Berggren representation). Two representative cases are analysed corresponding to whether the Fermi level is below or above the continuum threshold. It is found that long-lived resonances are mostly determined by either bound states or by narrow Gamow resonances. However, they are significantly affected by wide resonances and the continuum background itself.  相似文献   

9.
《Nuclear Physics A》1999,660(3):255-266
In this work we discuss possible definitions of the mean value of the energy for a resonant (Gamow) state. The mathematical and physical aspects of the formalism are reviewed. The concept of rigged Hilbert space is used as a supportive tool in dealing with Gamow-resonances.  相似文献   

10.
Exponentially decaying ‘Gamow state’ vectors are obtained from S-matrix poles in the lower half of the second sheet and are defined as functionals over a subspace of the nuclear space Φ. Exponentially growing ‘Gamow state’ vectors are obtained from S-matrix poles in the upper half of the second sheet and are defined as functionals over another subspace of Φ. On functionals over these two subspaces the dynamical group of time development splits into two semigroups.  相似文献   

11.
As almost any S-matrix of quantum theory possesses a set of complex poles (or branch cuts), it is shown using one example that this is the case in quantum field theory in curved space-time. These poles can be transformed into complex eigenvalues, the corresponding eigenvectors being Gamow vectors. This formalism, which is heuristic in ordinary Hilbert space, becomes a rigorous one within the framework of a properly chosen rigged Hilbert space. Then complex eigenvalues produce damping or growing factors and a typical two semigroups structure. It is known that the growth of entropy, decoherence, and the appearance of correlations, occur in the universe evolution, but this fact is demonstrated only under a restricted set of initial conditions. It is proved that the damping factors are mathematical tools that allow one to enlarge the set.  相似文献   

12.
Gamow vectors are rigourously derived for a realistic case including an infinite number of resonant poles. This is the case of resonances produced by cut-off potentials. These are three-dimensional spherically symmetric potentials which vanish outside a bounded region. We solely consider the case of particles without internal structure and work with l = 0.  相似文献   

13.
《Physics letters. [Part B]》1987,198(3):307-311
The Gamow separable expansion for realistic nucleon-nucleon potentials is generalized in order to include the coupled channel case. The Gamow vectors are obtained according to the method proposed by Baldo, Ferreira and Streit. Excellent accuracy is obtained in the 3S13D1 channel for the Reid soft-core and Argonne V14 interactions.  相似文献   

14.
By extending the notion of mixed states to functionals acting on the space of observables with diagonal singularity we obtain a well-defined complex spectral decomposition of the time evolution for a quantum decaying system. In this formalism, generalized Gamow states are obtained with well-defined physical properties.  相似文献   

15.
Gamow vectors and resonances play an important role in scattering theory, especially in the physics of metastable states. We study Gamow vectors and resonances in a time-dependent setting using the Borel summation method. In particular, we analyze the behavior of the wave function ψ(x,t) for one dimensional time-dependent Hamiltonian \(H=-\partial_{x}^{2}\pm2\delta(x)(1+2r\cos\omega t)\) where ψ(x,0) is compactly supported.We show that ψ(x,t) has a Borel summable expansion containing finitely many terms of the form \(\sum_{n=-\infty}^{\infty}e^{i^{3/2}\sqrt{-\lambda_{k}+n\omega i}|x|}A_{k,n}e^{-\lambda_{k}t+n\omega it}\), where λ k represents the associated resonance. This expression defines Gamow vectors and resonances in a rigorous and physically relevant way for all frequencies and amplitudes in a time-dependent model.For small amplitude (|r|?1) there is one resonance for generic initial conditions. We calculate the position of the resonance and discuss its physical meaning as related to multiphoton ionization. We give qualitative theoretical results as well as numerical calculations in the general case.  相似文献   

16.
Through two examples: the Friedrichs model and a particular case of central potential scattering, we illustrate the way of constructing Gamow vectors.  相似文献   

17.
18.
Whereas in Dirac quantum mechanics and relativistic quantum field theory one uses Schwartz space distributions, the extensions of the Hilbert space that we propose uses Hardy spaces. The in- and out-Lippmann-Schwinger kets of scattering theory are functionals in two rigged Hilbert space extensions of the same Hilbert space. This hypothesis also allows to introduce generalized vectors corresponding to unstable states, the Gamow kets. Here the relativistic formulation of the theory of unstable states is presented. It is shown that the relativistic Gamow vectors of the unstable states, defined by a resonance pole of the S-matrix, are classified according to the irreducible representations of the semigroup of the Poincaré transformations (into the forward light cone). As an application the problem of the mass definition of the intermediate vector boson Z is discussed and it is argued that only one mass definition leads to the exponential decay law, and that is not the standard definition of the on-the-mass-shell renormalization scheme.  相似文献   

19.
We combine halo/cluster effective field theory (H/CEFT) and the Gamow shell model (GSM) to describe the 0+ ground state of 6He as a three-body halo system. We use two-body interactions for the neutron-alpha particle and two-neutron pairs obtained from H/CEFT at leading order, with parameters determined from scattering in the p3/2 and s0 channels, respectively. The three-body dynamics of the system is solved using the GSM formalism, where the continuum states are incorporated in the shell model valence space. We find that in the absence of three-body forces the system collapses, since the binding energy of the ground state diverges as cutoffs are increased. We show that addition at leading order of a three-body force with a single parameter is sufficient for proper renormalization and to fix the binding energy to its experimental value.  相似文献   

20.
《Physica A》1988,153(3):652-662
A formulation of perturbation theory is provided following the Brussels school formalism in wave-functions space. The text is also an introduction to the Brussels school theory of irreversibility.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号