首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this article, we treat the problem of two-dimensional uniform steady channel flow of turbid water with theory of similarity. Under the condition of similarity of turbulent fluctuation velocity and fluctuation of concentration of sand particles, we obtain the profile of the vertical distribution of concentration of sand particles. This profile of vertical distribution of concentration of sand particles is slightly different from that obtained by diffusion theory, and departs from that obtained by gravitational theory.  相似文献   

2.
陈彬  刘阁 《计算力学学报》2017,34(6):785-792
油液在运行过程中不可避免地会产生颗粒物,影响油液的正常使用,甚至出现设备故障,因而分析含悬浮颗粒油液的动态特征,掌握在不同压力变化条件下油液及颗粒物的变化规律具有重要意义。利用两相流体理论建立了含悬浮颗粒油液的悬浮流动力学模型,通过特征线法进行了数值求解,将数值结果与实验数据比较,具有较好的一致性;根据所建模型,分析了不同系统压力条件下悬浮流中各相的脉动规律。结果表明,流场中各相参数的脉动幅值随着系统压力的增加而增大;管路始端和终端各相参数的脉动时刻分别位于1/4脉动周期(T)的奇数倍和偶数倍处,管路中段各相参数的脉动时刻则位于T/8的奇数倍处;悬浮颗粒速度会受到油液速度拖曳力作用,其变化趋势与油液速度基本一致,颗粒浓度分布与油液压力的变化趋势完全相反。  相似文献   

3.
When incident particles impact into a sand bed in wind-blown sand movement, rebound of the incident particles and eject of the sand particles by the incident particles affect directly the development of wind sand flux. In order to obtain rebound and eject lift-off probability of the sand particles, we apply the particle-bed stochastic collision model presented in our pervious works to derive analytic solutions of velocities of the incident and impacted particles in the post-collision bed. In order to describe randomness inherent in the real particle-bed collision, we take the incident angle, the impact position and the direction of resultant action of sand particles in sand bed on the impacted sand particle as random variables, and calculate the rebound and eject velocities, angles and coefficients (ratio of rebound and eject velocity to incident velocity). Numerical results are found in accordance with current experimental results. The rebound and eject lift-off probabilities versus the incident and creeping velocities are predicted. The project was supported by the National Natural Science Foundation of China (10532040, 10601022). The English text was polished by Yunming Chen.  相似文献   

4.
The motion of freely suspended rodlike particles has been observed in the pressure-driven flow between the two flat plates of a Hele Shaw flow cell at low Reynolds numbers. Data are reported for rodlike particles with aspect ratios of 12.0 suspended in a Newtonian fluid for gap thickness to particle length ratios of 3, 6, and 20; and for rodlike particles with aspect ratios between 5 and 8 in a non-Newtonian fluid (79.25 wt.% water, 20.2 wt.% glycerine, and 0.55 wt.% polyacrylamide). For the Newtonian fluid, the time-dependent orientation of the particles near and far from walls was shown to be in quantitative agreement with Jeffery's theory for ellipsoids suspended in a simple shear flow if an effective aspect ratio is calculated from the experimental period of rotation. Particles aligned with the flow direction and less than a particle half-length from a wall interacted irreversibly with the wall. For the non-Newtonian fluid, the timedependent orientation far from a wall was shown to be in qualitative agreement with Leal's theory for a second-order fluid; however, particles that were aligned with the flow direction and were near walls did not rotate.  相似文献   

5.
沙粒跃移运动的数值模拟   总被引:1,自引:0,他引:1  
沙粒在风场作用下形成的风沙运动,直接导致一系列环境问题.现有的数值模拟并没有揭示风沙流的二维性质.本文提出一种合理有效的模拟方法来揭示风沙流时空的变化.气相运动采用大涡模型,而固相(沙粒)处理为高散体系(DEM),并利用已有的沙粒与床面碰撞的激溅函数,以获得整个风沙系统运动特性.结果表明:其发展过程与以往的试验结果相比较符合:风沙流达到稳定后,不同截面输沙率沿高度分布与平均输沙率相比差别很大,并大约在9cm高处,平均输沙率出现极值,单宽输沙率沿风向分布同样具有非均匀性.  相似文献   

6.
Since the shear waves involved in in-situ and laboratory measurement methods vary significantly in terms of the frequency range, it is necessary to consider the effects of frequency on the shear wave velocity. In this study, sand particles are assumed to be spherical solid particles with an equal radius and identical material properties, and sand skeletons are regarded as granular aggregations generated through the random packing of sand particles. It is also assumed that the sand particles only undergo elastic deformation during shear wave propagation. Based on a spherical particle model, a formula is obtained for calculating the shear wave velocity in sand, with the shear wave frequency as an extra influencing parameter. The quantitative calculations demonstrate that the shear wave velocity decreases with an increase of sand porosity, and accelerates with increases of vertical effective stress and elastic modulus of the sand particles. It is also indicated that both the particle density and Poisson’s ratio of the sand particles have negligible effects on the shear wave propagation. The frequency dispersion characteristics of shear wave propagating in sand are also discussed. Moreover, the critical frequency is defined and its analytical expression is derived. The calculation results obtained using the proposed equations agree well with the in-situ measurement results and bender element test data.  相似文献   

7.
In this study, the coupled effect of ionic strength, particle size, and flow velocity on transport and deposition of suspended particles (SP) in saturated sand was undertaken. Three polydispersive SP populations (silt particles with the median of 3.5, 9.5 and 18.3 \(\upmu \)m) were investigated using a pulse injection technique. High ionic strengths were used and vary from 0 to 600 mM (NaCl). Two high velocities were tested: 0.15 and 0.30 cm/s. Suspended particles recovery and deposition kinetics were strongly dependent on the solution chemistry, the hydrodynamics, and the suspended particles size, with greater deposition occurring for increasing ionic strength, lower flow velocity, and larger ratios of the median diameter of the SP to the median sand grain diameter. A shift between the extended Derjaguin–Landau–Verwey–Overbeek theory prediction (the particles and sand grain surfaces are considered chemically and topographically homogeneous) and the experimental results for certain ionic strength was observed. So, as reported in recent literature, effects of surface heterogeneities should be considered. The residence time of the non-captured particles is dependent on ionic strength and hydrodynamic. A relationship between the deposition kinetics, particle and grain sizes, flow velocity, and ionic strength is proposed.  相似文献   

8.
In this paper, we report on an experimental technique for the simultaneous measurement of temperature and three components of velocity in a three-dimensional thermal flow using scanning liquid-crystal thermometry and stereo velocimetry. The temperature is measured by the color image analysis of the liquid-crystal particles suspended in a fluid, while the three velocity components are measured by stereo particle image velocimetry (stereo PIV) with the aid of tracer particles. The measurement is carried out by scanning the light-sheet plane while capturing the sequential color images of the liquid crystals and tracer particles. This measurement allows the reconstruction of the three-dimensional distribution of temperature and full velocity field simultaneously. The present experimental technique is applied to the horizontal fluid layer of a turbulent Rayleigh-Bérnard convection and the three-dimensional structures of thermal plumes are evaluated. The experimental results indicate that the structures of plumes are often correlated with the vertical velocity of the fluid, but they behave randomly in space, influenced by the large-scale turbulence evident in the middle of the fluid layer.  相似文献   

9.
《力学快报》2022,12(6):100392
In hydraulics, when we deal with the problem of sand particles moving relative to the surrounding water, Stokes’ formula of resistance has usually been used to render the velocity of sedimentation of the particles. But such an approach has not been proved rigorously, and its accuracy must be carefully considered. In this paper, we discuss the problem of a sphere moving in a non-uniform flow field, on the basis of the fundamental theory of hydrodynamics. We introduce two assumptions: i) the diameter of the sphere is much smaller than the linear dimension of the flow field, and ii) the velocity of the sphere relative to the surrounding water is very small. Using these two assumptions, we solve the linearized Navier-Stokes equations and equations of continuity by the method of Laplace transform, and finally we obtain a formula for the resistance acting on a sphere moving in a non-uniform flow field.  相似文献   

10.
Point-particle based direct numerical simulation (PPDNS) has been a productive research tool for studying both single-particle and particle-pair statistics of inertial particles suspended in a turbulent carrier flow. Here we focus on its use in addressing particle-pair statistics relevant to the quantification of turbulent collision rate of inertial particles. PPDNS is particularly useful as the interaction of particles with small-scale (dissipative) turbulent motion of the carrier flow is mostly relevant. Furthermore, since the particle size may be much smaller than the Kolmogorov length of the background fluid turbulence, a large number of particles are needed to accumulate meaningful pair statistics. Starting from the relative simple Lagrangian tracking of so-called ghost particles, PPDNS has significantly advanced our theoretical understanding of the kinematic formulation of the turbulent geometric collision kernel by providing essential data on dynamic collision kernel, radial relative velocity, and radial distribution function. A recent extension of PPDNS is a hybrid direct numerical simulation (HDNS) approach in which the effect of local hydrodynamic interactions of particles is considered, allowing quantitative assessment of the enhancement of collision efficiency by fluid turbulence. Limitations and open issues in PPDNS and HDNS are discussed. Finally, on-going studies of turbulent collision of inertial particles using large-eddy simulations and particle-resolved simulations are briefly discussed.  相似文献   

11.
Simultaneous PIV and PTV measurements of wind and sand particle velocities   总被引:1,自引:0,他引:1  
Wind-blown sand is a typical example of two-phase particle-laden flows. Owing to lack of simultaneous measured data of the wind and wind-blown sand, interactions between them have not yet been fully understood. In this study, natural sand of 100–125 μm taken from Taklimakan Desert was tested at the freestream wind speed of 8.3 m/s in an atmospheric boundary layer wind tunnel. The captured flow images containing both saltating sand and small wind tracer particles, were separated by using a digital phase mask technique. The 2-D PIV (particle imaging velocimetry) and PTV (particle tracking velocimetry) techniques were employed to extract simultaneously the wind velocity field and the velocity field of dispersed sand particles, respectively. Comparison of the mean streamwise wind velocity profile and the turbulence statistics with and without sand transportation reveal a significant influence of sand movement on the wind field, especially in the dense saltating sand layer (y/δ < 0.1). The ensemble-averaged streamwise velocity profile of sand particles was also evaluated to investigate the velocity lag between the sand and the wind. This study would be helpful in improving the understanding of interactions between the wind and the wind-blown sand.  相似文献   

12.
Three-dimensional particle tracking velocimetry (3D-PTV) has been applied to particle-laden pipe flow at Reynolds number 10,300, based on the bulk velocity and the pipe diameter. The volume fraction of the inertial particles was equal to 1.4 × 10−5. Lagrangian velocity and acceleration statistics were determined both for tracers and for inertial particles with Stokes number equal to 2.3, based on the particle relaxation time and the viscous time scale. The decay of Lagrangian velocity and acceleration correlation functions was measured both for the fluid and for the dispersed phase at various radial positions. The decay of Lagrangian velocity correlations is faster for inertial particles than for flow tracers, whereas the decay of Lagrangian acceleration correlations is about 25% slower for inertial particles than for flow tracers. Further differences between inertial and tracer particles are found in velocity fluctuations evaluated for both positive and negative time lags. The asymmetry in time of velocity cross-correlations is more pronounced for inertial particles. Quadrant analysis revealed another difference still near the wall: ejection and sweep events are less frequent for inertial particles than for tracers.  相似文献   

13.
I.Intr0ducti0nThereexistsalargenumberofmixinglayernowswithsuspendedparticlesinindustryandagriculture,suchasintheburningcourseofc0alpowderandpowderyfuelandinthemixingcourseofpowderymaterials.Bytheoriticalandexperimenta1researches,wecanlearntheinteractionbe…  相似文献   

14.
Direct numerical simulation (DNS) of small prolate ellipsoidal particles suspended in a turbulent channel flow is reported. The coupling between the fluid and the particles is one-way. The particles are subjected to the hydrodynamic drag force and torque valid for creeping flow conditions. Six different particle cases with varying particle aspect ratios and equivalent response times are investigated. Results show that, in the near-wall region, ellipsoidal particles tend to align with the mean flow direction, and the alignment increases with increasing particle aspect ratio. When the particle inertia increases, the particles are less oriented in the spanwise direction and more oriented in the wall-normal direction. In the core region of the channel, the orientation becomes isotropic.  相似文献   

15.
Turbulent flow through a duct of square cross-section gives rise to off-axis secondary flows, which are known to transfer momentum between fluid layers thereby flattening the velocity profile. The aim of this study is to investigate the role of the secondary flows in the transport and dispersion of particles suspended in a turbulent square duct flow. We have numerically simulated a flow through a square duct having a Reynolds number of Reτ = 300 through discretization of the Navier–Stokes equations, and followed the trajectories of a large number of passive tracers and finite-inertia particles under a one-way coupling assumption. Snapshots of particle locations and statistics of single-particle and particle pair dispersion were analyzed. It was found that lateral mixing is enhanced for passive tracers and low-inertia particles due to the lateral advective transport that is absent in straight pipe and channels flows. Higher inertia particles accumulate close to the wall, and thus tend to mix more efficiently in the streamwise direction since a large number of the particles spend more time in a region where the mean fluid velocity is small compared to the bulk. Passive tracers tend to remain within the secondary swirling flows, circulating between the core and boundary of the duct.  相似文献   

16.
Basic fluid mechanics and stochastic theories are applied to show that the concentration distribution of suspended solid particles in a direction normal to the mean streamlines of a two-dimensional turbulent flow is greatly influenced by the lift force exerted on them in the vicinity of the wall. Analytic solution shows that, when the direction of the mean flow is horizontal, the probability density functionp (y, t) for random displacements of the particles will have a maximum value at a point from the wall where the perpendicular component of the lift force precisely balances particle gravity. Interpretation of experimental observations is presented using this theory.  相似文献   

17.
Particle image velocimetry (PIV) estimates the fluid velocity field measuring the displacement of small dispersed particles between two successive instants separated by a small time interval. The accuracy of the measurements depends on the ability of the particles to accommodate their velocity to the fluid fluctuations. When the fluid is subjected to extreme accelerations, the small but finite inertia prevents the particles from following the fluid, originating a substantial relative velocity. This effect is shown to be crucial for applications of PIV to turbulent premixed combustion, particularly in the product region at locations just behind the instantaneous flame front. The issuing inaccuracy may easily spoil the estimate of certain statistical observables which are of crucial importance in the theory of turbulent premixed combustion. By exploiting the direct numerical simulation of a model air/methane flame, a suitable criterion for proper particle seeding is validated and compared with the corresponding experiments with a combined PIV/OH-LIF (laser-induced fluorescence) system. The proposed parameter, the flamelet Stokes number, depends on particle properties and thermochemical conditions of the flame and substantially restricts the particle dimensions required for a reliable estimate of the relevant flow statistics.  相似文献   

18.
The present paper examines the stream-wise dispersion of suspended fine particles with settling velocities in an oscillatory turbulent shear flow with or without a non-zero mean over a rough-bed surface when the particles are being released from an elevated continuous source. A finite-difference implicit method is employed to solve the unsteady turbulent convective-diffusion equation. A combined scheme of central and four-point upwind differences is used to solve the steady state equation and the Alternating Direction Implicit (ADI) method is adopted for unsteady equation. It is shown how the mixing of settling particles is influenced by the tidal oscillatory current and the corresponding eddy diffusivity when the initial distribution of concentration regarded as a line-source. The vertical concentration profiles of suspended fine particles with settling velocities are presented for different downstream stations for various values of settling velocity and the frequency of the oscillation in tidal flow. For two-dimensional unsteady dispersion equation, the behaviour of iso-concentration lines for different values of settling velocity, frequency of the oscillation, dispersion time and releasing height is studied in terms of the relative importance of convection and eddy diffusion.  相似文献   

19.
The cross-stream migration of a circular particles (or infinitely long cylinder) in two dimensional, inertia-less viscoelastic pressure-driven flows is examined through complementary finite element simulations and second-order fluid perturbation analyses for small Deborah number (De), where De is defined as the fluid relaxation time divided by the characteristic flow time. A neutrally buoyant, freely suspended particle migrates toward the center of the channel for all particle sizes and cross-stream positions due to the coupled effects of the linear and quadratic variations of the imposed velocity. A particle that is held at a fixed position, in contrast, experiences a cross-stream force directed toward the wall as a result of the coupled effects of the local shear flow and the flow relative to the particle.  相似文献   

20.
The forces and torques on two moving solid particles suspended in a fluid and almost in contact with each other (or on a particle almost in contact with a wall) are found in terms of their relative motion by using a type of lubrication theory, the results so obtained being asymptotically valid for small gap widths. It is assumed that the surfaces of the particles involved if brought together, are such that contact would occur at a single point at which surface curvatures are finite.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号