首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 656 毫秒
1.
CoO nanowires with diameters of 50_80 nm, and lengths of up to more than 5 μm have been successfully synthesized by a simple environmentally friendly molten salt route, in which the precursor CoCO3 nanoparticles are decomposed to form high-purity CoO nanowires in NaCl flux. The structure features and morphology of the as-prepared CoO nanowires were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), high-resolution TEM (HRTEM), and selected area electron diffraction (SAED). The chemical composition and oxidation state of the prepared nanowires were systemically studied by X-ray photoelectron spectra (XPS) and laser Raman spectroscopy. The results indicated that the as-prepared CoO nanowires were composed of pure cubic CoO phase. The growth mechanism of the synthesized nanowires was also discussed in detail based on the experimental results.  相似文献   

2.
We have performed a detailed investigation of the metal-organic chemical vapor deposition (MOCVD) growth and characterization of InN nanowires formed on Si(1 1 1) substrates under nitrogen rich conditions. The growth of InN nanowires has been demonstrated by using an ion beam sputtered (∼10 nm) Au seeding layer prior to the initiation of growth. We tried to vary the growth temperature and pressure in order to obtain an optimum growth condition for InN nanowires. The InN nanowires were grown on the Au+In solid solution droplets caused by annealing in a nitrogen ambient at 700 °C. By applying this technique, we have achieved the formation of InN nanowires that are relatively free of dislocations and stacking faults. Scanning electron microscopy (SEM) showed wires with diameters of 90–200 nm and lengths varying between 3 and 5 μm. Hexagonal and cubic structure is verified by high resolution X-ray diffraction (HR-XRD) spectrum. Raman measurements show that these wurtzite InN nanowires have sharp peaks E2 (high) at 491 cm−1 and A1 (LO) at 591 cm−1.  相似文献   

3.
Polycrystalline Bi2Te3 nanowires were prepared by a hydrothermal method that involved inducing the nucleation of Bi atoms reduced from BiCl3 on the surface of Te nanowires, which served as sacrificial templates. A Bi–Te alloy is formed by the interdiffusion of Bi and Te atoms at the boundary between the two metals. The Bi2Te3 nanowires synthesized in this study had a length of 3–5 μm, which is the same length as that of the Te nanowires, and a diameter of 300–500 nm, which is greater than that of the Te nanowires. The experimental results indicated that volume expansion of the Bi2Te3 nanowires was a result of the interdiffusion of Bi and Te atoms when Bi was alloyed on the surface of the Te nanowires. The morphologies of Bi2Te3 are strongly dependent on the reaction conditions such as the temperature and the type and concentration of the reducing agent. The morphologies, crystalline structure and physical properties of the product were analyzed by X-ray diffraction (XRD), field-emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM), selected area electron diffraction (SAED) and X-ray photoelectron spectroscopy (XPS).  相似文献   

4.
Without the use of any extra surfactant or template, γ-MnOOH single crystalline nanowires were synthesized directly through the hydrothermal reaction between KMnO4 and toluene in distilled water at 180 °C for 24 h; and β-MnO2 single crystalline nanowires could be obtained just by calcination of the γ-MnOOH nanowires in air at 280 °C for 5 h. The as-prepared γ-MnOOH and β-MnO2 nanowires were characterized by X-ray powder diffraction, atomic absorption spectroscopy, Fourier transformed infrared spectroscopy, scanning electron microscope, transmission electron microscope, high-resolution transmission electron microscope and selected area electron diffraction.  相似文献   

5.
Single crystalline Ce-doped ZnO hexagonal nanoplatelets are successfully synthesized. Zinc acetate, cerium nitrate, potassium hydroxide and poly vinyl alcohol were mixed together and transferred to a 100 mL Teflon-lined stainless steel autoclave kept at 150 °C for 24 h. The obtained precipitant is calcined at 600 °C. The morphology and microstructure were determined by field emission scanning electron microscopy (FE-SEM), X-ray diffraction transmission electron microscopy (TEM), energy-dispersive X-ray spectroscopy (EDX) and photoluminescence (PL) spectroscopy. The investigation confirmed that the products were of the wurtzite structure of ZnO. The doped hexagonal nanoplatelets have edge length 25 nm and thickness 11 nm. EDX result showed that the amount of Ce in the product is about 15%. Photoluminescence of these doped hexagonal nanoplatelets exhibits a blue shift and weak ultraviolet (UV) emission peak, compared with pure ZnO, which may be induced by Ce-doping. The growth mechanism of the doped hexagonal nanoplatelets was also discussed.  相似文献   

6.
Molecular dynamics simulation of the crystallization behavior of a liquid gold (Au) nanoparticle, about 4 nm in diameter, on cooling has been carried out based on the modified embedded-atom-method potential. With decreasing cooling rate, the final structure of the particle changes from amorphous to crystalline via icosahedron-like structure. While the outer shell of the icosahedron-like particle shows crystalline feature with {1 1 1}-like facets, the inner core remains amorphous. It is found that the structure of the fully crystallized particle is polycrystalline face-centered cubic (fcc). The fcc structure of the gold nanoparticle is proved energetically the most stable form.  相似文献   

7.
Well-crystallized straight Si nanowires (SiNWs) were successfully prepared in large scale via a facile reaction between NaN3 and Na2SiF6 at 600 °C without using any catalyst. Characterization by X-ray powder diffraction and transmission electron microscopy demonstrates that the as-obtained product is pure-phase cubic SiNWs with diameters of 40 nm or so, and lengths of several micrometers. And the SiNWs with spherical tips can be obtained at a temperature as low as 300 °C. Heating temperature and holding time have crucial influence on the synthesis and morphology of the SiNWs. An oxide-assisted growth mechanism is responsible for the formation of the SiNWs.  相似文献   

8.
NaYF4:Yb,Er micro/nanocrystals with different sizes and morphologies such as nanospheres, short flexural nanorods, and half opened microtubes, were synthesized in reverse microemulsion under solvothermal condition using the quaternary reverse microemulsion system, CTAB/1-butanol/cyclohexane/aqueous solution. The X-ray diffraction analysis confirmed that cubic phase NaYF4:Yb,Er can completely transform to hexagonal phase with increasing reaction time. The scanning electron microscope and transmission electron microscope images revealed that the morphology of the product can be tailored by varying the reaction time. A possible crystalline growth process of the NaYF4:Yb,Er micro/nanocrystals was discussed. The obtained half opened microtubes exhibited an intense green upconversion luminescence, which may be attractive in novel optoelectronic devices.  相似文献   

9.
《Journal of Crystal Growth》2002,240(3-4):484-488
We report on the control of nanocrystal sizes in CdS nanocrystalline films prepared by ammonia-free chemical bath deposition technique. We studied the effect of deposition duration, bath temperature during deposition, and post-preparation heat treatment. Nanocrystals (NCs) with radii from 2.6 nm to more than 10 nm were prepared and characterised by transmission electron microscopy, X-ray diffraction, and optical photoluminescence and absorption spectroscopy. We observed cubic to hexagonal phase transition for large NCs prepared by the heat treatment.  相似文献   

10.
The authors report the growth of high density ZnSe/ZnCdSe heterostructure nanowires on oxidized Si substrate. It was found that the as-grown nanowires were tapered with mixture of cubic zinc-blende and hexagonal wurtzite structures. It was also found that photoluminescence intensities observed from these ZnSe/ZnCdSe heterostructure nanowires were much larger than observed from the homogeneous ZnSe nanowires. Furthermore, it was found that activation energies for the nanowires with well widths of 6, 12, 18 and 24 nm were 22, 41, 67 and 129 meV, respectively.  相似文献   

11.
Nonstoichiometric (Cu2−xSe) and stoichiometric (CuSe, β-Cu2Se and Cu2Se) copper selenide hexagonal nanoplates have been synthesized using different general and convenient copper sources, e.g. copper chloride, copper sulphate, copper nitrate, copper acetate, elemental copper with elemental selenium, friendly ethylene glycol and hydrazine hydrate in a defined amount of water at 100 °C within 12 h adopting the solvothermal method. Phase analysis, purity and morphology of the product have been well studied by X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), high resolution transmission electron microscopy (HRTEM) and energy dispersive X-ray diffraction (EDAX) techniques. The structural and compositional analysis revealed that the products were of pure phase with corresponding atomic ratios. SEM, TEM and HRTEM analyses revealed that the nanoplates were in the range 200–450 nm and the as-prepared products were uniform and highly crystallized. The nanoplates consisted of {0 0 1} facets of top–bottom surfaces and {1 1 0} facets of the other six side surfaces. This new approach encompasses many advantages over the conventional solvothermal method in terms of product quality (better morphology control with high yield) and reaction conditions (lower temperatures). Copper selenide hexagonal nanoplates obtained by the described method could be potential building blocks to construct functional devices and solar cell. This work may open up a new rationale on designing the solution synthesis of nanostructures for materials possessing similar intrinsic crystal symmetry. On the basis of the carefully controlled experiments mentioned herein, a plausible formation mechanism of the hexagonal nanoplates was suggested and discussed. To the best of our knowledge, this is the first report on nonstoichiometric (Cu2−xSe) as well as stoichiometric (CuSe, β-Cu2Se and Cu2Se) copper selenide hexagonal nanoplates with such full control of morphologies and phases by this method under mild conditions.  相似文献   

12.
Anorthic SrHPO4 nanobelts and hexagonal Sr10O(PO4)6 nanorods were obtained by a simple hydrothermal method without adding any surfactant as template. The as-synthesized products were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM) and high-resolution transmission electron microscopy (HRTEM). TEM and HRTEM observations of the products revealed that the as-prepared SrHPO4 nanobelts and Sr10O(PO4)6 hexagonal nanorods are single crystals with their preferential growth direction along the normal of (1 0 0) and (0 0 1) planes, respectively.  相似文献   

13.
A novel synthetic route for the preparation of CdS nanowires has been developed. CdS nanowires with a diameter of ca. 4 nm have been successfully prepared by the microwave irradiation of a complex of cadmium-1-pyrrlidine dithio carboxylic acid ammonium (C5H12N2S2, APDTC) [Cd(APDTC)2]2 in an ethylenediamine solution. The CdS nanowires were characterized by powder X-ray diffraction pattern, transmission electron microscopy (TEM), UV-Vis spectroscopy, diffuse reflection spectroscopy and PL spectroscopy.  相似文献   

14.
Zinc micro and nanostructures were synthesized in vacuum by condensing evaporated zinc on Si substrate at different gas pressures. The morphology of the grown Zn structures was found to be dependent on the oxygen partial pressure. Depending on oxygen partial pressure it varied from two-dimensional microdisks to one-dimensional nanowire. The morphology and structural properties of the grown micro and nanostructures were studied by scanning electron microscopy (SEM) and X-ray diffraction (XRD). Transmission electron microscopy (TEM) studies on the grown Zn nanowires have shown that they exhibit core/shell-like structures, where a thin ZnO layer forms the shell. A possible growth mechanism behind the formation of different micro and nanostructures has been proposed. In addition, we have synthesized ZnO nanocanal-like structures by annealing Zn nanowires in vacuum at 350 °C for 30 min.  相似文献   

15.
李芹  张海明  李菁  杨岩  缪玲玲 《人工晶体学报》2012,41(1):136-140,145
本文利用二次阳极氧化法在p型低阻〈100〉晶向的硅衬底上制备了AAO/Si,以硅基AAO为辅助模板,采用电化学沉积的方法以Zn(NO3).6H2O和HMT(C6H12N4)为原料,在80℃的水浴槽中制备了ZnO纳米线结构。采用SEM,XRD和拉曼光谱等手段对ZnO/AAO/Si复合结构进行表征。SEM图表明ZnO纳米线已成功组装到AAO/Si模板里,直径约45 nm,长度约为600 nm。XRD和拉曼光谱表明ZnO具有六角纤锌矿多晶结构。光致发光(PL)谱图表明ZnO/AAO/Si复合结构在565 nm附近有较宽黄绿发射峰,在395 nm附近有微弱的紫外发射峰。场发射测试结果表明,ZnO纳米线的场增强因子的β值为2490,场增强因子很高,具有广泛的应用前景。  相似文献   

16.
Highly ordered hexagonal prism microstructures of copper sulfide (CuS) by assembling nano-flakes have been synthesized with high yield via a facile one-step route. We synthesized CuS microstructures using low cost beginning materials CuSO4·5H2O and Na2S2O3·5H2O under lower reaction temperature (60 °C). Hexamethylinetetramin (C6H12N4, HMT) was introduced into the reaction system as a capped agent. The influence of reaction time and capping agent (HMT) on the final structure of products was studied systematically. The obtained products were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), Energy-dispersive X-ray spectroscopes (EDS), and transmission electron microscopy (TEM). The possible mechanism for the formation of the interesting highly ordered hexagonal prism microstructures CuS was also proposed.  相似文献   

17.
A novel approach for preparation of red-emitting europium-doped yttrium oxide phosphor (Y2O3:Eu) by using the bicontinuous cubic phase (BCP) process was reported in this paper. The BCP system was composed of anionic surfactant sodium bis(2-ethylhexyl)sulfosuccinate (AOT) and aqueous yttrium nitrate/europium nitrate solution. Energy dispersive spectrometer analysis revealed the homogeneous precipitation occurred in the BCP structure. Thermogravimetric analysis measurements indicated the precursor powder was europium-doped yttrium hydroxide, Y1−xEux(OH)3. Scanning electron microscopy micrographs showed the precursor powder had a primary size about 30 nm and narrow size distribution. After heat treatment in furnace above 700 °C for 4 h, high crystallinity Y2O3:Eu phosphors was obtained. However, the primary size of particles grew to 50–200 nm and the dense agglomerates with a size below 1 μm were formed. X-ray diffraction patterns indicated the crystal structure of precursor powders and Y2O3:Eu phosphors were amorphous and body-centered cubic structure, respectively. The photoluminescence analysis showed that the obtained Y2O3:Eu phosphor had a strong red emitting at 612 nm and the quenching started at a Eu concentration of 10 mol%. This study indicated that the BCP process could be used to prepare the highly efficient oxide-based phosphors.  相似文献   

18.
The morphology and luminescence properties of ZnO nanowires synthesized using NiO catalyst in a chemical vapor deposition system under different growth ambient have been studied. ZnO nanostructures were prepared in nitrogen, ammonia and hydrogen ambient and characterized using X-ray diffraction, scanning electron microscopy, transmission electron microscopy and photoluminescence. Growth in nitrogen ambient yields ZnO nanoneedles while growth with ammonia and hydrogen ambient ends up with ZnO nanowires. Presence of the Ni tip at the end in either morphology indicated the involvement of vapor–liquid–solid growth mechanism. Enhanced green emission in ZnO nanowires implies the presence of a high density of oxygen vacancies. Influence of the ambient gases on the morphology and optical properties of ZnO nanostructures is discussed.  相似文献   

19.
Gallium nitride (GaN) nanospindles have been synthesized via a solid-state reaction at a low-temperature condition. X-ray powder diffraction (XRD), Raman spectrum and high-resolution transmission electron microscopy (HRTEM) revealed that the synthesized GaN crystallized in a hexagonal structure and displaying spindly particles morphology has an average diameter of 100 nm and length of 400 nm X-ray photoelectron spectroscopy (XPS) of the sample gave the atomic ratio of Ga and N of 1.04:1. Room-temperature photoluminescence (PL) spectrum showed that the as-prepared product had a peak emission at 372 nm. The possible formation mechanism of the wurtzite GaN is briefly discussed.  相似文献   

20.
Comprehensive microstructures of 7% cobalt-doped rutile TiO2 thin films grown on c-plane sapphire by pulsed laser deposition were characterized using transmission electron microscopy (TEM). The effects of oxygen pressure during growth on the Co distribution inside the films were investigated, and the detailed growth mechanism of both TiO2 and TiO2+Co was discussed. The similar oxygen sublattices and low mismatch between (1 0 0) rutile and c-plane sapphire favors the rutile phase. However, the three-fold symmetry of the substrate surface resulted in three rutile domain orientation variants, and they grow adjacent to each other. Cobalt was found to precipitate out as nanocrystals inside the TiO2 matrix as the growth pressure of oxygen was decreased. At 0.05 mTorr oxygen pressure, almost all of the Co segregates into crystallographically aligned nanocrystals with a particle size of 4.4±0.15 nm. All the samples have magnetic coercivity at room temperature. The magnetic moment per Co atom increased with decreased oxygen pressure, suggesting that the Co that replaced the Ti2+ in the TiO2 lattice does not have a large magnetic moment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号