首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A novel series of poly(10‐hexyl‐phenothiazine‐S,S‐dioxide‐3,7‐diyl) and poly(9,9′‐dioctyl‐fluorene‐2,7‐diyl‐alt‐10‐hexyl‐3,7‐phenothiazine‐S,S‐dioxide) (PFPTZ‐SS) compounds were synthesized through Ni(0)‐mediated Yamamoto polymerization and Pd(II)‐catalyzed Suzuki polymerization. The synthesized polymers were characterized by 1H NMR spectroscopy and elemental analysis and showed higher glass transition temperatures than that of pristine polyfluorene. In terms of photoluminescence (PL), the PFPTZ‐SS compounds were highly fluorescent with bright blue emissions in the solid state. Light‐emitting devices were fabricated with these polymers in an indium tin oxide/poly(3,4‐ethylene dioxythiophene):poly(styrene sulfonate)/polymer/Ca/Al configuration. The electroluminescence (EL) of the copolymers differed from the PL characteristics: the EL device exhibited a redshifted greenish‐blue emission in contrast to the blue emission observed in the PL. Additionally, this unique phenothiazine‐S,S‐dioxide property, triggered by the introduction of an electron‐deficient SO2 unit into the electron‐rich phenothiazine, gave rise to improvements in the brightness, maximum luminescence intensity, and quantum efficiency of the EL devices fabricated with PFPTZ‐SS. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 1236–1246, 2007  相似文献   

2.
Poly(fluorene)-type materials are widely used in polymer-based emitting devices. During operation there appears, however, an additional emission peak at around 2.3 eV, leading to both a color instability and reduced efficiency. The incorporation of the carbazole units has been proven to efficiently suppress the keto defect emission. In this contribution, we apply quantum-chemical techniques to investigate two series of alternating fluorene/carbazole oligomers and copolymers poly[2,7-(N-(2-methyl)-carbazole)-co-alt-2,7-m(9,9-dimethylfluorene)], namely, PFmCz (m = 1,2) and gain a detailed understanding of the influence of carbazole units on the electronic and optical properties of fluorene derivatives. The electronic properties of the neutral molecules, HOMO-LUMO gaps (Delta(H-L)), in addition to the positive and negative ions, are studied using B3LYP functional. The lowest excitation energies (E(g)s) and the maximal absorption wavelength lambda(abs) of PFmCz (m = 1,2) are studied, employing the time-dependent density functional theory (TD-DFT). The properties of the two copolymers, such as Delta(H-L), E(g), IPs, and EAs were obtained by extrapolating those of the oligomers to the inverse chain length equal to zero (1/n = 0). The outcomes showed that the carbazole unit is a good electron-donating moiety for electronic materials, and the incorporation of carbazole into the polyfluorene (PF) backbone resulted in a broadened energy gap and a blue shift of both the absorption and photoluminescence emission peaks. Most importantly, the HOMO energies of PF1Cz and PF2Cz are both a higher average (0.4 eV) than polyfluorene (PF), which directly results in the decreasing of IPs of about 0.2 eV more than PF, indicating that the carbazole units have significantly improved the hole injection properties of the copolymers. In addition, the energy gap tends to broaden and the absorption and emission peaks are gradually blue-shifted to shorter wavelengths with an increase in the carbazole content in the copolymers. This is due to the interruption of the longer conjugation length of the backbone in the (F1Cz)(n) series.  相似文献   

3.
One serious problem associated with polyfluorene and derivatives (PFs) as blue luminescent polymers is the significant energy barrier for hole or electron injections; thus they usually face charge injection and transport difficulties with the currently available cathode and anode materials. The incorporation of an electron-donating or -accepting unit is expected to improve the recombination of the charge carriers. In this paper, we apply quantum-chemical techniques to investigate three fluorene-based copolymers, copoly(2,5-ethylenedioxythiophene-alt-9,9'-dimethylfluorene) (PEF), copoly(2,5-pyridine-alt-9,9'-dimethylfluorene) (PPyF), and poly[(fluorene-2,7-diyl)-alt-(1,3,4-oxadiazole-2,5-diyl)] (PFO), in which Delta(H)(-)(L) [the energy difference between the highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO), when n = infinity], the lowest excitation energies (E(g)), ionization potentials (IP), electron affinities (EA), and lambda(abs) and lambda(em) are fine-tuned by the regular insertion of electron-donating unit 3,4-ethylenedioxythiophene (EDOT) or electron-withdrawing units pyridine and 1,3,4-oxadiazole. The results show that the alternate incorporation of electron-donating moiety EDOT increases the HOMO energy and thus reduces the IPs, and consequently the hole injection was greatly improved. On the other hand, even though both kinds of charge carriers will improve the electron-accepting ability, the results show that electron-withdrawing moieties greatly facilitate the electron-transporting. Especially in PFO, the highly planar structural character resulted from the strong push-pull effect between the fluorene ring and the 1,3,4-oxadiazole ring and a weak interaction between the nitrogen and oxygen atoms in 1,3,4-oxadiazole ring and the hydrogen atom of the fluorene ring, significantly lowering the LUMO energy levels and thus improve the electron-accepting and transporting properties by the low LUMO energy levels.  相似文献   

4.
A new strategy to realize efficient white‐light emission from a binary fluorene‐based copolymer (PF‐Phq) with the fluorene segment as a blue emitter and the iridium complex, 9‐iridium(III)bis(2‐(2‐phenyl‐quinoline‐N,C3′)(11,13‐tetradecanedionate))‐3,6‐carbazole (Phq), as a red emitter has been proposed and demonstrated. The photo‐ and electroluminescence properties of the PF‐Phq copolymers were investigated. White‐light emission with two bands of blue and red was achieved from the binary copolymers. The efficiency increased with increasing concentration of iridium complex, which resulted from its efficient phosphorescence emission and the weak phosphorescent quenching due to its lower triplet energy level than that of polyfluorene. In comparison with the binary copolymer, the efficiency and color purity of the ternary copolymers (PF‐Phq‐BT) were improved by introducing fluorescent green benzothiadiazole (BT) unit into polyfluorene backbone. This was ascribed to the exciton confinement of the benzothiadiazole unit, which allowed efficient singlet energy transfer from fluorene segment to BT unit and avoided the triplet quenching resulted from the higher triplet energy levels of phosphorescent green emitters than that of polyfluorene. The phosphorescence quenching is a key factor in the design of white light‐emitting polyfluorene with triplet emitter. It is shown that using singlet green and triplet red emitters is an efficient approach to reduce and even avoid the phosphorescence quenching in the fluorene‐based copolymers. The strategy to incorporate singlet green emitter to polyfluorene backbone and to attach triplet red species to the side chain is promising for white polymer light‐emitting diodes. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 453–463, 2008  相似文献   

5.
Poly(fluorene)-type materials are widely used in polymer-based emitting devices. One of the drawbacks of light-emitting diodes based on polyfluorene derivatives is the injection of holes from the anode due to the high ionization potential (IP) of most derivatives. Substitution by electron-donating alkoxy substituents or by adding charge carriers on the conjugated polymer's backbone produces a remarkable influence on its electrical and optical properties. In this contribution, we apply quantum-chemical techniques to investigate a family of pi-conjugated polymers with substituted dimethoxy groups at the 3,6 positions of the fluorene ring, namely, poly(2,7-(3,6-dimethoxy-fluorene)(PDMOF), poly(2,7-(3,6-dimethoxy-fluorene)-co-alt-fluorene (PDMOFF), and poly(2,7-(3,6-dimeth-oxy-fluorene)-co-alt-2,5-thiophene (PDMOFT). The electronic properties of the neutral molecules, HOMO-LUMO gaps (Delta(H)(-)(L)), in addition to the positive and negative ions, are studied using the B3LYP functional. The lowest excitation energies (E(g)) and the maximal absorption wavelength lambda(abs) of PDMOF, PDMOFF, and PDMOFT are studied by employing time-dependent density functional theory (TD-DFT) and the ZINDO semiempirical method. The IP, EA, and E(g) values of each polymer were obtained by extrapolating those of the oligomers to the inverse chain length equal to zero ((1)/(n)() = 0). The influence of the presence of methoxy groups on the fluorene moiety on the ionization potential is especially emphasized. The outcomes show that the HOMO energies of these systems under study increase by about 0.4 eV and the IP values decrease by about 0.3 eV compared to those of the corresponding polyfluorene. Both effects result in a reduction of the energy barrier for the injection of holes in related polymeric light-emitting devices and should contribute to the enhancement of their performances. Because of the cooperation with thiophene in PDMOFT, which results in a good planar conformation, both the hole-creating and electron-accepting abilities are improved.  相似文献   

6.
The weak fluorescence (quantum yield <1 % in cyclohexane) of phenothiazine ( PTZ ) impedes its further application. In addition, the nitro group (NO2) is a well-known fluorescence quencher. Interestingly, we obtained a highly fluorescent chromophore by combining these two moieties, forming 3-nitrophenothiazine ( PTZ-NO2 ). For comparison, a series of PTZ derivatives bearing electron-withdrawing groups (EWGs; CN and CHO) or electron-donating groups (EDGs; OMe) at the 3-position have been designed and synthesized. The phenothiazines bearing EWGs exhibited enhanced emission compared with the parent PTZ or EDG derivatives. Computational approaches unveiled that for PTZ and PTZ-OMe , the transitions are from HOMOs dominated by π orbitals to LUMOs of mixed sulfur nonbonding–π* orbitals, and hence are partially forbidden. In contrast, the EWGs lower the energy level of the lone-pair electrons on the sulfur atom, thereby suppressing the mixing of the nonbonding orbital with the π* orbital in the LUMO, such that the allowed ππ* transition becomes dominant. This work thus demonstrates a judicious chemical design to fine-tune the transition character in PTZ analogues, with PTZ-NO2 attaining 100 % emission quantum yields in nonpolar solvent.  相似文献   

7.
Four copolyfluorenes chemically doped with 0.1 and 1 mol % 3,7‐bis[2‐thiophene‐2‐yl)‐2‐cyanovinyl]phenothiazine ( PFPhT ) or 2,5‐bis[2‐(thiophene‐2‐yl)‐2‐cyanovinyl]thiophene chromophores ( PFThT ) were synthesized using the Suzuki coupling reaction and applied in white‐light‐emitting devices. They were characterized by GPC, elemental analysis, DSC, TGA, optical spectra, and cyclic voltammetry. They exhibited good thermal stability (Td > 420 °C) and moderate glass transition temperatures (>95 °C). The PhT‐Br and ThT‐Br showed PL peaks at 586 and 522 nm (with a shoulder at 550 nm). In film state, PL spectra of the copolymers comprised emissions from the fluorene segments and the chromophores due to incomplete energy transfer. Both monomers exhibited low LUMO levels around ?3.50 to ?3.59 eV, whereas the PhT‐Br owned the higher HOMO level (?5.16 eV) due to its electron‐donating phenothiazine core. Light‐emitting diodes with a structure of ITO/PEDOT:PSS/copolymer/Ca(50 nm)/Al(100 nm) showed broad emission depending on the chromophore contents. The maximum brightness and maximum current efficiency of PFPhT2 ( PFThT1 ) device were 8690 cd/m2 and 1.43 cd/A (7060 cd/m2 and 0.98 cd/A), respectively. White‐light emission was realized by further blending PFPhT2 with poly(9,9‐dihexylfluorene) (w/w = 10/1), with the maximum brightness and maximum current efficiency being 10,600 cd/m2 and 1.85 cd/A. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 833–844, 2009  相似文献   

8.
In order to investigate the explicit optoelectronic variations of the photoluminescent polymer with sterically hindered side chains, three novel alternate polymers (P0, P1, and P2) based on fluorene and carbazole moieties were successfully synthesized through Suzuki coupling reaction. The molecular structures of the polymers were fully characterized by 1H‐NMR, 13C‐NMR, elemental analysis, and gel permeation chromatograph, respectively. The photophysical properties, thermal stability, and energy band gaps of polymers P0, P1, and P2 were further examined through UV–vis absorption, photoluminescent spectra, differential scanning calorimetry, thermogravimetric analysis, and cyclic voltammetry. The experimental results indicated that the polymers took on wide band gaps of about 3.50 eV with deep blue emission in thin solid films. These polymers were found to show a high thermal stability with decomposition temperatures at 5% weight loss of the compounds in the range of 353–416 °C. Blue light‐emitting electroluminescent devices of the most branched polymer P2 with highest light‐emitting efficiency as emitting layers were characterized, which showed obviously improved spectral stabilities with respect to the parent polyfluorene materials. In conclusion, we have established an effective method to improve the spectral stabilities of polyfluorene material by synthesizing the zigzag‐shaped copolymer of fluorene and carbazole with sterically hindered pendant moieties of different molecular sizes. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

9.
Upconversion-induced fluorescence in platinum-octaethylporphyrin (PtOEP)-doped thin films of a spirobifluorene-anthracene copolymer has been investigated. Upon exciting in the range of the absorption band (2.31 eV, 537 nm) of the guest molecules, blue fluorescence (2.75 eV, 450 nm) from the spirobifluorene host was observed. The intensity of the upconverted emission was found to be one order of magnitude higher than from a PtOEP doped but anthracene-free spirobifluorene copolymer and than previously reported for metallated porphyrin-doped polyfluorene samples. It is argued that the efficient upconversion originates from the triplet energy transfer from the phosphorescent dopant to the sensitive unit of the host polymer, followed by triplet-triplet annihilation and finally blue emission from the spirobifluorene host polymer backbone.  相似文献   

10.
Quantum-chemical calculations are applied to study the white-light emission from a single-polymer system with simultaneous blue (polyfluorene as a blue host) and orange (2,1,3-benzothiadiazole-based derivative as an orange dopant) emissions. Particular attention is paid to the variation in electronic and optical properties upon the structure tuning in pristine 2,1,3-benzothiadiazole-based derivative. Importantly, by the introduction of electron-donating groups on terminal N,N-disubstituted amino groups, the electronic and optical properties of designed 2,1,3-benzothiadiazole-based derivative have been tuned, making them to be potential candidates as orange dopants in white organic light-emitting devices based on polymers with polyfluorene as a blue-light-emitting host. Furthermore, designed 2,1,3-benzothiadiazole-based derivatives have a possibility to be good hole or ambipolar transport materials in organic light-emitting diodes from the charge hopping model. Finally, we find that the designed 2,1,3-benzothiadiazole-based derivative exhibit improved stability.  相似文献   

11.
Multifunctional emitting materials are scarce and need to be further explored. Now, a newly anthraquinone derivative, 2‐(phenothiazine‐10‐yl)‐anthraquinone (PTZ‐AQ) was designed and synthesized and found to demonstrate polymorphism, multi‐color emission, aggregation‐induced emission (AIE), mechanochromic luminescence (MCL), and thermally activated delayed fluorescence (TADF) in its different solid forms. It is shown for the first time that TADF properties of a compound can be systematically tuned via its aggregation state. The optimized PTZ‐AQ crystal shows a small singlet–triplet energy splitting of 0.01 eV and exhibits red TADF with a photoluminescence quantum yield as high as 0.848. This study shows that the unique multiple functions can be integrated into one single compound through controlling the aggregation states, which provides a new strategy for the investigation and application of multifunctional organic materials.  相似文献   

12.
Multifunctional emitting materials are scarce and need to be further explored. Now, a newly anthraquinone derivative, 2‐(phenothiazine‐10‐yl)‐anthraquinone (PTZ‐AQ) was designed and synthesized and found to demonstrate polymorphism, multi‐color emission, aggregation‐induced emission (AIE), mechanochromic luminescence (MCL), and thermally activated delayed fluorescence (TADF) in its different solid forms. It is shown for the first time that TADF properties of a compound can be systematically tuned via its aggregation state. The optimized PTZ‐AQ crystal shows a small singlet–triplet energy splitting of 0.01 eV and exhibits red TADF with a photoluminescence quantum yield as high as 0.848. This study shows that the unique multiple functions can be integrated into one single compound through controlling the aggregation states, which provides a new strategy for the investigation and application of multifunctional organic materials.  相似文献   

13.
Synthesized single-walled carbon nanotubes (SWNTs) are mixtures of right- and left-handed helicity and their separation is an essential topic in nanocarbon science. In this paper, we describe the separation of right- and left-handed semiconducting SWNTs from as-produced SWNTs. Our strategy for this goal is simple: we designed copolymers composed of polyfluorene and chiral bulky moieties because polyfluorenes with long alkyl-chains are known to dissolve only semiconducting SWNTs and chiral binaphthol is a so-called BINAP family that possesses a powerful enantiomer sorting capability. In this study, we synthesized 12 copolymers, (9,9-dioctylfluorene-2,7-diyl)x((R)- or (S)-2,2'-dimethoxy-1,1'-binaphthalen-6,6-diyl)y, where x and y are copolymer composition ratios. It was found that, by a simple one-pot sonication method, the copolymers are able to extract either right- or left-handed semiconducting SWNT enantiomers with (6,5)- and (7,5)-enriched chirality. The separated materials were confirmed by circular dichroism, vis-near IR and photoluminescence spectroscopies. Interestingly, the copolymer showed inversion of SWNT enantiomer recognition at higher contents of the chiral binaphthol moiety. Molecular mechanics simulations reveal a cooperative effect between the degree of chirality and copolymer conformation to be responsible for these distinct characteristics of the extractions. This is the first example describing the rational design and synthesis of novel compounds for the recognition and simple sorting of right- and left-handed semiconducting SWNTs with a specific chirality.  相似文献   

14.
Two electron donor-acceptor triads based on a benzoquinone acceptor linked to a light absorbing [Ru(bpy)(3)](2+) complex have been synthesized. In triad 6 (denoted Ru(II)-BQ-Co(III)), a [Co(bpy)(3)](3+) complex, a potential secondary acceptor, was linked to the quinone. In the other triad, 8 (denoted PTZ-Ru(II)-BQ), a phenothiazine donor was linked to the ruthenium moiety. The corresponding dyads Ru(II)-BQ (4) and PTZ-Ru(II) (9) were prepared for comparison. Upon light excitation in the visible band of the ruthenium moiety, electron transfer to the quinone occurred with a rate constant k(f) = 5 x 10(9) s(-)(1) (tau(f) = 200 ps) in all the quinone containing complexes. Recombination to the ground state followed, with a rate constant k(b) approximately 4.5 x 10(8) s(-)(1) (tau(b) approximately 2.2 ns), for both Ru(II)-BQ and Ru(II)-BQ-Co(III) with no indication of a charge shift to generate the reduced Co(II) moiety. In the PTZ-Ru(II)-BQ triad, however, the initial charge separation was followed by a rapid (k > 5 x 10(9) s(-)(1)) electron transfer from the phenothiazine moiety to give the fairly long-lived PTZ(*)(+)-Ru(II)-BQ(*)(-) state (tau = 80 ns) in unusually high yield for a [Ru(bpy)(3)](2+)-based triad (> 90%), that lies at DeltaG degrees = 1.32 eV relative to the ground state. Unfortunately, this triad turned out to be rather photolabile. Interestingly, coupling between the oxidized PTZ(*)(+) and the BQ(*)(-) moieties seemed to occur. This discouraged further extension to incorporate more redox active units. Finally, in the dyad PTZ-Ru(II) a reversible, near isoergonic electron transfer was observed on excitation. Thus, a quasiequilibrium was established with an observed time constant of 7 ns, with ca. 82% of the population in the PTZ-Ru(II) state and 18% in the PTZ(*)(+)-Ru(II)(bpy(*)(-)) state. These states decayed in parallel with an observed lifetime of 90 ns. The initial electron transfer to form the PTZ(*)(+)-Ru(II)(bpy(*)(-)) state was thus faster than what would have been inferred from the Ru(II) emission decay (tau = 90 ns). This result suggests that reports for related PTZ-Ru(II) and PTZ-Ru(II)-acceptor complexes in the literature might need to be reconsidered.  相似文献   

15.
<正> 我们曾报道过一系列含有给电子生色基团的丙烯酰类单体如甲基丙烯酸二甲氨基苄酯、N-(N′,N′-二甲氨基苯基)丙烯酰胺类、8-丙烯酰氧喹啉类、N-丙烯酰-N′-苯基哌嗪类、N-丙烯酰-N′-嘧啶哌嗪类、N-甲基丙烯酰氧乙基-N-甲基代苯胺等的合成、聚合、引发行为以及它们的聚合物的荧光行为。这些单体结构的共同点在于其双键为缺电子性而生色基团为给电子性,因而在荧光行为上,由于生成激基复合物或电荷转移而发生荧光  相似文献   

16.
大鼠尿液中异丙嗪及其主要代谢物的GC-MS分析   总被引:1,自引:0,他引:1  
采用气相色谱-质谱(GC-MS)分析了大鼠尿液中的异丙嗪及其代谢产物。尿液经β-葡萄糖醛酸酶酶解,Oasis(HLB 3 mL固相萃取柱提取后,以Restek R tx-5MS(30 m×0.25 mm×0.25μm)石英毛细管色谱柱为分析柱,经GC-MS分离检测。根据质谱图对代谢物的结构进行鉴定。结果表明:在大鼠尿液中检出了吩噻嗪、去甲基异丙嗪、异丙嗪亚砜、2-羟基去甲基异丙嗪、二羟基异丙嗪、顺-N-(1-丙烯基)吩噻嗪、反-N-(1-丙烯基)吩噻嗪、顺-N-(1-丙烯基)吩噻嗪砜、反-N-(1-丙烯基)吩噻嗪砜、顺-N-(1-丙烯基)吩噻嗪亚砜及反-N-(1-丙烯基)吩噻嗪亚砜11种代谢物。对异丙嗪在大鼠体内的氧化、还原等主要代谢途径进行了讨论。  相似文献   

17.
用Suzuiki聚合反应将二溴代吡啶 (2 ,5 、2 ,6 、3,5 取代 )与芴共聚 ,合成了不同主链结构的吡啶 芴共聚物 .研究结果表明 ,将吡啶基引人聚芴主链可以调节共聚物的发光颜色 .间位吡啶基引入聚芴主链 ,使聚合物的能级加宽 ,PL、EL光谱发生蓝移 ;对位吡啶基则使光谱红移 .间位吡啶基 (3,5 Py、2 ,6 Py)引入聚芴主链 ,可提高聚合物的色纯度 .共聚物中 3,5 Py含量为 4 0mol%时 ,可得到较纯的蓝光 .  相似文献   

18.
A novel rhenium(I) bipyridyl complex 1a, [(4,4’-di-COOEt-bpy)Re(CO)3(py-NHCO-PTZ)PF6] and a model 1b, [(4,4’-di-COOEt-bpy)Re(CO)3(py-PTZ)PF6] (bpy is 2, 2’-bipyridine, py-NHCO-PTZ is phenothiazine-(10-carbonyl amide) pyridine and py-PTZ is 10-(4-picolyl) phenothiazine) were synthesized. Their photo-induced electron transfer (ET) reaction with electron acceptor methyl viologen (MV2+) in acetonitrile was studied by nanosecond laser flash photolysis at room temperature. Photoexcitation of 1 in the presence of MV2+ led to ET from the Re moiety to MV2+ generating Re(II) and methyl viologen radical (MV·+). Then Re(II) was reduced either by the charge recombination with MV·+ or by intramolecular ET from the attached PTZ, regenerating the photosensitizer Re(I) and forming the PTZ radical at 510 nm. In the case of 1b, the absorption for PTZ radical can be observed distinctly accompanied intermolecular ET, whereas not much difference at 510 nm can be detected for 1a on the time scale of the experiments. This demonstrates that the linking bridge plays a key role on the intramolecular ET in complex 1.  相似文献   

19.
Photoinduced charge-separation and charge-recombination processes of fullerene[60] dyads covalently connected with phenothiazine and its trimer (PTZ n -C 60, n = 1 and 3) with a short amide linkage were investigated. A time-resolved fluorescence study provided evidence of charge separation via the excited singlet state of a C 60 moiety ( (1)C 60*), which displayed high efficiencies in various solvents; Phi (S) CS (quantum yield of charge separation via (1)C 60*) = 0.59 (toluene) to 0.87 (DMF) for PTZ 1-C 60 and 0.78 (toluene) to 0.91 (DMF) for PTZ 3-C 60. The transient absorption measurement with a 6 ns time resolution in the visible and near-IR regions showed evidence of the generation of radical ion pairs in relatively polar solvents for both dyads. In nonpolar toluene, only PTZ 1- (3)C 60* was observed for PTZ 1-C 60, whereas PTZ 3- (3)C 60* as well as the radical ion pair state in equilibrium were observed for PTZ 3-C 60. The radical ion pairs had relatively long lifetimes: 60 (DMF) to 910 ns ( o-dichlorobenzene) for (PTZ) 1 (*+)-C 60 (*-) and 230 (PhCN) to 380 ns ( o-dichlorobenzene) for (PTZ) 3 (*+)-C 60 (*-). The small reorganization energy (lambda) and the electronic coupling element (| V|) were estimated by the temperature dependence of the charge-recombination rates, i.e., lambda = 0.53 eV and | V| = 1.6 cm (-1) for (PTZ) 3 (*+)-C 60 (*-).  相似文献   

20.
A new bipolar conjugated polyfluorene copolymer with triphenylamine and cyanophenylfluorene as side chains, poly{[9,9‐di(triphenylamine)fluorene]‐[9,9‐dihexyl‐fluorene]‐[2,7‐bis(4′‐cyanophenyl)‐9,9′‐spirobifluorene]} ( PTHCF ), was synthesized for studying the polymer backbone emission. Its absolute weight‐average molecular weight was determined as 4.85 × 104 by using gel permeation chromatography with a multiangle light scattering detector. In contrast to the electronic absorption spectrum in dilute solution, the absorbance of PTHCF in thin film was slightly blue shifted. By comparison of the solution and thin‐film photoluminescence (PL) spectra, a red shift of Δλ = 8–9 nm was observed in the thin‐film PL spectrum. The HOMO and LUMO energy levels of the resulting polymer were electrochemically estimated as ?5.68 and ?2.80 eV, respectively. Under the electric‐field intensity of 4.8 × 105 V cm?1, the obtained hole and electron mobilities were 2.41 × 10?4 and 1.40 × 10?4 cm2 V?1 s?1, respectively. An electroluminescence device with configuration of ITO/PEDOT:PSS/ PTHCF 70%+PBD30%/CsF/Ca/Al exhibited a deep‐blue emission as a result of excitons formed by the charges migrating along the full‐fluorene main chain. The incorporation of the bipolar side chains into the polymer structure prevented the intermolecular interaction of the fluorene moieties, balance charge injection/transport, and thereby improve the polymer backbone emission. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2010  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号