首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
岩体水力劈裂的应力-渗流-损伤耦合模型研究   总被引:2,自引:0,他引:2  
利用无单元法追踪裂纹扩展的优势研究模拟岩体水力劈裂的数值分析模型。定义损伤变量以描述岩体的损伤程度对岩体渗透性和强度的影响,建立了岩体水力劈裂的应力-渗流-损伤耦合分析模型,并编制了基于无单元法的计算程序。综合考虑应力、渗流及损伤之间的相互作用影响,分析了具有初始裂纹的岩体平面应力模型的裂纹扩展过程,指出考虑渗流作用时的裂纹扩展角大于不考虑渗流作用时的裂纹扩展角。同时,裂纹内水压力和渗流的作用对于裂纹的扩展方向和扩展长度具有较大的影响。  相似文献   

2.
水力压裂是在高压粘滞流体或清水作用下地层内裂缝起裂与扩展的过程。由于包含岩石断裂和流-固耦合等复杂问题,对该过程的数值模拟具有相当大的挑战性。本文建立基于有限元与离散元混合方法的裂纹模型,模拟岩石裂纹扩展,实现了连续向非连续的转化;建立双重介质流动模型,裂隙流作为孔隙渗流的压力边界,孔隙渗流反作用裂隙的压力求解,处理了流体在基岩与人工裂缝中的协调流动;将裂纹模型与流体流动模式进行结合,建立断裂-应力-渗流耦合形式的力学模型,进一步分析了水力压裂的基本过程,综合多种数值计算方法,编写程序,在验证岩体裂纹模型与双重介质流动模型有效性的基础上,对压裂过程进行复现,将模拟结果与文献结果进行了对比,并讨论了所构建模型的优缺点。  相似文献   

3.
The prediction of the growth of a hydraulic fracture in an oil bearing formation based on the injection rate of fluid is valuable in applications of the waterflood technique in secondary oil recovery. In this paper, the problem of hydraulic fracture growth is studied under the assumption of uniform distribution of pressure in the fracture and unidirectional permeating flow in an infinitely large isothermal linearly elastic porous medium saturated with a one-phase incompressible fluid. The condition of plane strain is imposed in the study. A comparison of the constant fracture toughness criterion based on the asymptotic value for large crack growth with the crack tip ductility criterion for an ideally plastic solid under plane strain and small-scale yielding conditions indicates that the effect of ductility of rock on the crack growth is so small that the steady state value of the energy release rate can be reached within a short period of crack growth. Thus we can employ the constant fracture toughness criterion in our study. The analysis includes the effects of both fracture volume increase and leak-off of fluid from the surface of the fracture. A nonlinear singular integro-differential equation can be formulated for the quasi-static hydraulic fracture growth under a prescribed injection rate. It is solved numerically by a modified fourth order Runge-Kutta method.  相似文献   

4.
In the previous work presented in Part I (Theoret. Appl. Fracture Mech. 18, 89–102 (1993)), hydraulic fracture in an infinitely large saturated porous medium is analyzed under an assumption of one-phase flow in the medium. The investigation is extended in this paper to the case of a two phase saturated immiscible flow of oil and water in the porous medium. The medium is initially saturated with oil. Flow in the medium is induced by diffusion of water injected into the fracture. The quasi-static growth of the fracture for a prescribed injection rate is analyzed based on the assumptions that the pressure in the fracture is uniform and that the permeating flow in the medium is unidirectional. The constant fracture toughness criterion for plane strain deformation is employed and the effect of capillary pressure is neglected. Empirical formulas are used for the permeabilities of the oil and water phases. It is seen that the distributions of water saturation and pore pressure in the medium are governed by two nonlinear partial differential equations. Numerical solutions are obtained by a finite difference scheme with iterations. It is found that the injected water is restricted within a layer near the surface of the fracture whose thickness is small compared with the length of the fracture. Thus the flow in the medium is governed essentially by the oil phase. To compare our problem with the corresponding problem of one-phase flow, we find that the difference in crack growth in these two problems is small for the ration of kinematic viscosities of the oil and water phases within the practical range. Hence our study confirms the validity of the one phase flow assumption used in the previous work for prediction of hydraulic fracture growth.  相似文献   

5.
While a hydraulic fracture is propagating, fluid flow and associated pressure drops must be accounted for both along the fracture path and perpendicularly, into the formation that is fractured, because of fluid leakoff. The accounting for the leakoff shows that it is the main factor that determines the crack length. The solved problem is useful for the technology of hydraulic fracturing and a good example of mass transport in a porous medium. To find an effective approach for the solution, the thin crack is represented here as the boundary condition for pore pressure spreading in the formation. Earlier such model was used for heat conduction into a rock massif from a seam under injection of hot water. Of course, the equations have other physical sense and mathematically they are somewhat different. The new plane solution is developed for a linearized form that permits the application of the integral transform. The linearization itself is analogous to the linearization of the natural gas equation using the real gas pseudo-pressure function and where the flux rates are held constant and approximations are introduced only into the time derivatives. The resulting analytical solution includes some integrals that can be calculated numerically. This provides rigorous tracking of the created fracture volume, leakoff volume and increasing fracture width. The solutions are an advance over existing discreet formulations and allow ready calculations of the resulting fracture dimensions during the injection of the fracturing fluid.  相似文献   

6.
A study is made of a controllable mechanical system in the form of a Timoshenko beam with a weight. The system models a flexible-link robot manipulator. A Galerkin approximation based on the solutions of the corresponding Sturm-Liouville problem is constructed for the partial differential equations of motion. Conditions of local controllability of the Galerkin approximation in the neighborhood of the system’s equilibrium state are established. The stabilizability of the equilibrium state is proved, and an explicit scheme for feedback control design is proposed __________ Translated from Prikladnaya Mekhanika, Vol. 41, No. 12, pp. 107–115, December 2005.  相似文献   

7.
A mathematical model for hydraulic fracturing is proposed. The model is based on the presentation of the fractured portion of the stratum adjacent to the well as a heterogeneous fractured porous medium. Assumptions usually used in the theory of elastic flow are applied. Formulas for determining the size of the hydraulic fracturing zone and the degree of fracture opening under conditions of relative equilibrium are derived.  相似文献   

8.
Within the framework of the fractal mobile-immobile medium model describing non-Fickian effects occurring in admixture seepage due to particle adhesion to the solid matrix, an expression for the admixture flux is derived. Flow discretization intended for finite-difference calculations is proposed and used as a basis for a conservation-law scheme for solving the model equations with account for admixture sources. Several one-dimensional test problems of admixture propagation in an imposed seepage flow are solved using the approach developed.  相似文献   

9.
In this paper we show how the K-BKZ model fits in within a thermodynamic framework for describing the response of materials undergoing dissipative processes. The K-BKZ model is shown to arise naturally within this framework by choosing appropriate forms for the stored energy and the rate of dissipation for describing the material. It is also shown that by relaxing some of the assumptions that lead to a K-BKZ model, it is possible to derive a host of other fluid models that are generalizations of the K-BKZ model.  相似文献   

10.
Two approaches to incorporate the effects of rotation and curvature in scalar eddy viscosity models are explored. One is the “Modified coefficients approach” – to parameterize the model coefficients such that the growth rate of turbulent kinetic energy is suppressed or enhanced. The other is the “Bifurcation approach” – to parameterize the eddy viscosity coefficient such that the equilibrium solution bifurcates from healthy to decaying solution branches. Simple, yet, predictive models in each of these two approaches are proposed and validated on some benchmark test cases characterized by profound effects of system rotation and/or streamline curvature. The results obtained with both the models are encouraging.  相似文献   

11.
本文系统地阐述基于多孔介质渗流-损伤耦合原理,进行水力压裂FEM的数值实现方法。基本架构为:(1)引入孔隙流体压力膨胀系数将孔隙流体压力与应力场进行耦合;(2)基于损伤局部化模型,提出裂缝张开度表达式; (3)提出水力压裂引起的多孔介质水-力学属性的各向异性表达式; (4)提出全流量加载的耦合分析方案。最后作为实例,模拟三维地层水压裂缝扩展形态,通过比较模型的数值解和经典理论解,验证该方法的正确性。  相似文献   

12.
The effect of the mesh geometry on the accuracy of solutions obtained by the finite-element method for problems of linear fracture mechanics is investigated. The guidelines have been formulated for constructing an optimum mesh for several routine problems involving elements with linear and quadratic approximation of displacements. The accuracy of finite-element solutions is estimated based on the degree of the difference between the calculated stress-intensity factor (SIF) and its value obtained analytically. In problems of hydrofracturing of oil-bearing formation, the pump-in pressure of injected water produces a distributed load on crack flanks as opposed to standard fracture mechanics problems that have analytical solutions, where a load is applied to the external boundaries of the computational region and the cracks themselves are kept free from stresses. Some model pressure profiles, as well as pressure profiles taken from real hydrodynamic computations, have been considered. Computer models of cracks with allowance for the pre-stressed state, fracture toughness, and elastic properties of materials are developed in the MSC.Marc 2012 finite-element analysis software. The Irwin force criterion is used as a criterion of brittle fracture and the SIFs are computed using the Cherepanov–Rice invariant J-integral. The process of crack propagation in a linearly elastic isotropic body is described in terms of the elastic energy release rate G and modeled using the VCCT (Virtual Crack Closure Technique) approach. It has been found that the solution accuracy is sensitive to the mesh configuration. Several parameters that are decisive in constructing effective finite-element meshes, namely, the minimum element size, the distance between mesh nodes in the vicinity of a crack tip, and the ratio of the height of an element to its length, have been established. It has been shown that a mesh that consists of only small elements does not improve the accuracy of the solution.  相似文献   

13.
An exact solution of the problem of hydraulic fracturing in a permeable medium with continuous fluid injection in a partially penetrated formation is constructed using the Perkins-Kern fracture model. The amount of fluid leakage from the fracture is determined using the pressure field of the fluid filtrate defined by the Shchelkachev equation (of the piezoconductivity type). Universal profiles of the fluid pressure in the fracture and the rate of fluid flow from it are obtained. It is shown that at the Perkins-Kern fracture tip, there is a dramatic increase in the leakage from the fracture.  相似文献   

14.
为了研究页岩天然层理倾角及强度等对水力压裂裂纹扩展的影响,采用室内水力压裂实验,通过监测孔直接对裂纹扩展的实时监测和注水压力信息及试件压裂后的剖切,分析层理倾角、强度等对压裂裂纹扩展的影响。实验结果表明:水力压裂过程中,垂直最小地应力稳定扩展的主裂缝遇层理时,层理面与主裂缝初始扩展方向夹角越小,主裂缝越易沿着层理面方向扩展,层理面与主裂缝初始扩展方向夹角越大,主裂缝遇层理面时越易贯穿层理面沿原方向扩展;层理方位,地应力及基质抗拉强度不变,层理的抗拉强度远弱于基质抗拉强度时,主裂缝与层理面相遇后越易沿着层理面方向扩展,层理抗拉强度与基质抗拉强度越相近,主裂缝遇层理时越易贯穿层理沿原方向扩展;层理方位和强度不变,地应力及应力差越大,主裂缝遇层理后越易贯穿层理面沿原方向扩展。  相似文献   

15.
Translated from Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, No. 5, pp. 62–67, September–October, 1991.  相似文献   

16.
17.
不同围压作用下非均匀岩石水压致裂过程的数值模拟   总被引:2,自引:0,他引:2  
从岩石细观非均匀性的特点出发,提出一个描述非均匀材料渗流和破裂相互作用的数值模型。在这个数值模型中,单元的力学、水力学性质根据统计分布而变化,以体现材料的随机不均质性,材料在开裂破坏过程中流体压力传递通过单元渗流,损伤耦合迭代来实现。算例表明,该模型能较好地模拟出岩石类材料在水力压裂作用下,微结构非均匀分布和不同围压比对破裂模式、失稳压力的影响,非均匀性导致试件的开裂压力、失稳压力明显不同,裂纹扩展路径不规则发展,模拟结果和实验结果较为一致。  相似文献   

18.
The method of regularized Stokeslets (MRS) uses a radially symmetric blob function of infinite support to smooth point forces and allows for evaluation of the resulting flow field. This is a common method to study swimmers at zero Reynolds number where the Stokeslet is the fundamental solution corresponding to the kernel of the single layer potential. Simulating the collective motion of N micro-swimmers using the MRS results in at least N2 pair-wise interactions. Efficient simulation of a large number of swimmers in free space is observed with the implementation of the kernel-independent fast multipole method (FMM) for radial basis functions. We illustrate the complexity of the algorithm on a simple test case where we study regularized point forces, showing that the method is of order N. Additionally, we explore accuracy in time for the MRS where the swimmers are modeled as Kirchhoff rods and the kernel-independent FMM is compared to the direct calculation using the standard MRS. Optimal hydrodynamic efficiency is also explored for different configurations of swimmers.  相似文献   

19.
In the framework of strain gradient plasticity, a solid body with boundary surface playing the role of a dissipative boundary layer endowed with surface tension and surface energy, is addressed. Using the so-called residual-based gradient plasticity theory, the state equations and the higher order boundary conditions are derived quite naturally for both the bulk material and the boundary layer. A phenomenological constitutive model is envisioned, in which the bulk material and the boundary layer obey (rate independent associative) coupled plasticity evolution laws, with kinematic hardening laws of differential nature for the bulk material, but of nondifferential nature for the layer. A combined global maximum dissipation principle is shown to hold. The higher order boundary conditions are discussed in details and categorized in relation to some peculiar features of the boundary surface, and their basic role in the coupling of the bulk/layer plasticity evolution laws is pointed out. The case of an internal interface is also studied. An illustrative example relating to a shear model exhibiting energetic size effects is presented. The theory provides a unified view on gradient plasticity with interfacial energy effects.  相似文献   

20.
为了更真实地模拟水力压裂过程中的岩石变形、裂缝扩展及流体流动,在自主开发的拉格朗日元与离散元耦合的连续-非连续方法的基础上,发展了一种流-固耦合方法。在该方法中,裂缝可沿四边形单元对角线和单元边界扩展,流体流动满足立方定律。通过与单一裂缝非稳态渗流模型及KGD模型的理论解进行对比,验证了该方法的正确性。由定向射孔水力压裂的模拟结果可以发现,(1)距离射孔越远,流体压力越小;随着时间的增加,裂缝中流体压力降低。(2)随着射孔角度的增加,裂缝起裂和扩展过程中的流体压力及转向距离增加;随着x方向水平应力的增加,裂缝起裂和扩展过程中的流体压力增加;两个方向水平应力之差越大,裂缝转向距离越小。(3)随着时间的增加,裂缝区段数目的增速变慢,这与裂缝体积增加变快有关。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号