首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The ground state binding energies of axial hydrogenic impurities in a coaxial cylindrical quantum well wire are reported as a function of the barrier height and the radius of wire in the presence of a uniform magnetic field applied parallel to the wire axis. The quantum well wire (QWW) is assumed to be an infinitely long cylinder of GaAs material surrounded by AlxGa1−xAs (for finite case and vacuum for infinite case). Binding energy calculations were performed with the use of a variational procedure in the effective mass approximation. We observed that the binding energy is sensitive to well radius only for both larger RR values and small magnetic fields. We also compared the infinite and finite case binding energies and showed that increasing the Al concentration in the finite barrier case, binding energies are increased as expected. Our results are in good agreement and complementary with the previous theoretical works.  相似文献   

2.
We propose a coaxial cylindrical quantum well wire (QWW) system, in which two conducting cylindrical layers are separated by an insulating layer. The ground state binding energy of a hydrogenic impurity subjected to uniform magnetic field applied parallel to the wire axis is studied within a variational scheme as a function of the inner barrier thickness for two different impurity positions and various barrier potentials. The ground state energy and wave function in the presence of a magnetic field is directly calculated using the fourth-order Runge–Kutta method. It is found that the binding energy in critical barrier thickness shows a sharp increase or decrease depending on the impurity position and magnetic field strength. The main result is that a sharp variation in the binding energy, which may be important in device applications, depends strongly not only on the location of the impurity but also on the magnetic field and the geometry of the wire.  相似文献   

3.
Using a variational procedure within the effective-mass approximation we have calculated the binding energies of shallow-donor impurities in cylindrical GaAs quantum-well wires, in an axial magnetic field and an infinite confinement potential. In contrast to the previous results in quantum wells, we have found that, in the magnetic field, the impurity binding energy may be increased or decreased as a function of the impurity location in the quantum wire. On the basis of analysis of the variation of the binding energy with magnetic field strength, a method is proposed for experimentalists to confirm the presence of a shallow donor in the vicinity of the wire boundary.  相似文献   

4.
The binding energy and the polarizability are estimated for a shallow donor confined to move in a GaAs quantum well wire (QWW) with a rectangular and square cross-section under the action of an axial magnetic field. In this work, the Hass variational method within the effective mass approximation is used in the case of infinite and finite barrier QWWs. We present our results as a function of the size of the wire and for several values of the magnetic field strength. It is found that the magnetic field strongly reduces the polarizability. The finite barrier-height effect is important for smaller well widths. For higher fields and large wire, the effects of the magnetic field are predominant and the barrier potential is a small perturbation.  相似文献   

5.
We have investigated the effects of the magnetic field which is applied perpendicular to the growth direction of the well on the interband absorption and on the binding energy of the excitons in an GaAs/Ga1−xAlxAs inverse parabolic quantum well (IPQW) with different widths as well as different Al concentrations at the well center. The calculations were performed within the effective mass approximation, using a variational method. We observe that IPQW structure turns into parabolic quantum well with the inversion effect of the magnetic field and the effective band gap of the system can be modified by changing Al concentration at the well center, the strength of the magnetic field and well dimensions. This case directly influences the nature of electronic and optical properties in this structure.  相似文献   

6.
The effect of uniform electric and magnetic fields on binding energy and photoionization cross-section of an off-axis hydrogen-like donor impurity in a QWW, approximated by a cylindrical well of finite depth, is investigated within the framework of variational approach. The dependencies of the binding energy and photoionization cross-section on electric field strength, magnetic field induction, wire radius and impurity position are obtained. The cases when the polarization vector of incident radiation is parallel and perpendicular to the wire axis are both discussed.  相似文献   

7.
Within the effective-mass approximation, we have investigated the influence of a strong magnetic field on the ground state binding energy and the photon energy dependence of the photoionization cross-section of a shallow donor impurity in a quasi-one-dimensional rectangular quantum wire with infinite and finite potential barriers, using a variational approach. It is found that the binding energy and the photoionization cross-section as a function of photon energy were drastically dependent on the sizes of the wire, the potential well heights and the applied magnetic field.  相似文献   

8.
X.R. Wang  J. Lu  C. He 《Annals of Physics》2009,324(8):1815-1820
The mechanism of magnetic field induced magnetic domain-wall (DW) propagation in a nanowire is revealed: A static DW cannot exist in a homogeneous magnetic nanowire when an external magnetic field is applied. Thus, a DW must vary with time under a static magnetic field. A moving DW must dissipate energy due to the Gilbert damping. As a result, the wire has to release its Zeeman energy through the DW propagation along the field direction. The DW propagation speed is proportional to the energy dissipation rate that is determined by the DW structure. The negative differential mobility in the intermediate field is due to the transition from high energy dissipation at low field to low energy dissipation at high field. For the field larger than the so-called Walker breakdown field, DW plane precesses around the wire, leading to the propagation speed oscillation.  相似文献   

9.
 We have investigated the effects of the magnetic field which is directed perpendicular to the well on the binding energy of the hydrogenic impurities in an inverse parabolic quantum well (IPQW) with different widths as well as different Al concentrations at the well center. The Al concentration at the barriers was always xmax=0.3. The calculations were performed within the effective mass approximation, using a variational method. We observe that IPQW structure turns into parabolic quantum well with the inversion effect of the magnetic field and donor impurity binding energy in IPQW strongly depends on the magnetic field, Al concentration at the well center and well dimensions.  相似文献   

10.
王龙庆  王为民 《中国物理 B》2014,23(2):28703-028703
Significant high magnetic gradient field strength is essential to obtaining high-resolution images in a benchtop mag- netic resonance imaging (BT-MRI) system with permanent magnet. Extending minimum wire spacing and maximum wire width of gradient coils is one of the key solutions to minimize the maximum current density so as to reduce the local heating and generate higher magnetic field gradient strength. However, maximum current density is hard to optimize together with field linearity, stored magnetic energy, and power dissipation by the traditional target field method. In this paper, a new multi-objective method is proposed to optimize the maximum current density, field linearity, stored magnetic energy, and power dissipation in MRI gradient coils. The simulation and experimental results show that the minimum wire spacings are improved by 159% and 62% for the transverse and longitudinal gradient coil respectively. The maximum wire width increases from 0.5 mm to 1.5 mm. Maximum gradient field strengths of 157 mT/m and 405 mT/m for transverse and lon- gitudinal coil are achieved, respectively. The experimental results in BT-MRI instrument demonstrate that the MRI images with in-plane resolution of 50 ~tm can be obtained by using the designed coils.  相似文献   

11.
Magnetic field induced exciton binding energy is investigated in a strained InAs/GaAs quantum wire within the framework of single band effective mass approximation. The strain contribution to the potential is determined through deformation potentials. The interband emission energy of strained InAs/GaAs wire is investigated in the influence of magnetic field with the various structural parameters. Magnetic field induced photoionization cross section of the exciton is studied. The total optical absorption and the refractive index changes as a function of normalized photon energy between the ground and the first excited state in the presence of magnetic field are analyzed. The optical absorption coefficients and the refractive index changes strongly depend on the incident optical intensity and the magnetic field. The occurred blueshift of the resonant peak due to the magnetic field will give the information about the variation of two energy levels in the quantum well wire. The optical absorption coefficients and the refractive index changes are strongly dependent on the incident optical intensity and the magnetic field.  相似文献   

12.
The binding energies of a hydrogenic donor in a GaN/AlGaN quantum dot are calculated in the influence of magnetic field. The calculations are carried out using the single-band effective mass approximation within a variational scheme. The magnetic field induced binding energy and diamagnetic susceptibility of the hydrogenic donor are obtained as a function of dot radius. Calculations have been carried out with and without the Zeeman effect through the energy-dependent effective mass. The diamagnetic shift of the hydrogenic donor is found for different dot radii. Our results show that (i) the binding energy is higher for smaller dot radii and the magnetic field effects are predominant for larger dot sizes, (ii) the binding energy is higher when the Zeeman effect is included for all the magnetic fields, (iii) the diamagnetic susceptibility increases with the magnetic field and is not pronounced for smaller dot radii and (iv) the diamagnetic shift has a good influence of larger dot radii.  相似文献   

13.
In this work, using the effective mass approximation within variational approach, we have studied the behavior of the excitonic binding energies in a cylindrical quantum wire with a parabolic confinement under the effect of externally applied magnetic field. We have shown that the excitonic binding energy is sensitive to the magnetic field value in contrast to the other potential profiles studied in literature such as rectangular quantum wells (wires).  相似文献   

14.
GaAs抛物量子线中弱耦合极化子的磁场效应   总被引:3,自引:1,他引:3  
应用变分法和改进的线性组合算符法,研究了磁场对抛物量子线中弱耦合极化子振动频率和相互作用能的影响.给出了GaAs抛物量子线中弱耦合极化子的振动频率和相互作用能与磁场和约束强度的依赖关系.对GaAs晶体作了数值计算,结果显示:极化子振动频率和相互作用能都随约束强度和外磁场的增加而增大.  相似文献   

15.
刘贺  温淑敏  赵春旺  哈斯花 《发光学报》2012,33(11):1198-1203
考虑外加磁场、压力及屏蔽效应,利用变分方法数值计算GaN/AlxGa1-xN无限深量子阱系统中的杂质态结合能。给出结合能随磁场和阱宽的变化关系,同时讨论了有无屏蔽时的区别。结果表明:在磁场和压力作用下,结合能随阱宽的增大而减小;阱宽和压力一定时,结合能随磁场的增大而增大。屏蔽效应使得有效库仑吸引作用减弱而导致杂质态结合能显著下降。屏蔽效应对结合能的影响随压力增大而增强,随磁场强度增大而减弱。  相似文献   

16.

The quasi-exact properties of an exciton are investigated theoretically in the presence of an external magnetic field using the effective-mass approach in GaAs parabolic quantum dot. The energy spectrum is obtained analytically as a function of the dot radius, interaction strength and magnetic field. It is established that, a steady bound state of an exciton in the ground state exists under the effect of a strong magnetic field; also I noticed that the exciton binding energy decreases by increasing both the radius of the dot and the magnetic field strength and the reduction becomes pronounced for larger dots. As expected, it has been found that the exciton total energy decreases with increasing the size of the dot and it enhances by increasing the magnetic field. It appears that the exciton total energy strongly depends on the magnetic field for dots with big size. The magnetic field effect on the exciton size also has been studied. It is shown that the increase in the magnetic field leads to a reduction in the exciton size; due to magnetic field confinement, while the size of an exciton reach its bulk limit as the dot size increases. Moreover, it is shown that, if the dot radius is sufficiently large the oscillator strength saturates and it becomes insensitive to the magnetic field while the increase in the magnetic field gradually weakened the oscillator strength. I have calculated the ground-state distribution for both the electron and the hole. It is found that the localization of the electron/hole increases in the presence of a magnetic field. Moreover, the ground-state optical-absorption intensity is investigated. Finally, the dependence of the lowest five states of an exciton on both the dot radius and the magnetic field are discussed.

  相似文献   

17.
Electric (E) fields induced near metal implants by MRI switched-gradient magnetic fields are calculated by a new equivalent-circuit numerical technique. Induced E-field results are found for a metallic spinal-fusion implant consisting of two thin wires connected to the metallic case of a current generator as well as for its subsections: a bare U-shaped wire, an insulated U-shaped wire, a cut insulated wire, and a generator. The presence of the metallic implants perturbs the E field significantly. Near the ends of the bare U-shaped wire, the E field is 89.7 times larger than in the absence of the wire. The greatest E field concentration occurs near the ends of the cut insulated wire, where the E field is 196.7 times greater than in the absence of the wire. In all cases, the perturbation of the induced E field by the implanted wire is highly localized within a few diameters of the wire.  相似文献   

18.
The binding energy of laser dressed donor impurity is calculated under the influence of a magnetic field in a quantum well. The binding energy of the ground state of a donor is investigated, within the single band effective mass approximation, variationally for different concentrations at the well centre. The effect of laser and magnetic fields on diamagnetic susceptibility of the hydrogenic donor is reported. The Landau energy levels of electrons in the quantum well as a function of magnetic field are reported. The results show that the diamagnetic susceptibility (i) decreases drastically as intensity of the laser field increases (ii) increases with the magnetic field strength (iii) decreases as the Al-concentration decreases and (iv) a variation of increase in binding energy is observed when non-parabolicity is included and this effect is predominant for narrow wells. Our results are in good agreement with previous investigations for other heterostructures in the presence of laser intensity.  相似文献   

19.
By solving the effective mass equation with the variational method, we studied the cyclotronresonance of magnetopolaron in cylindrical quan t um wires with arbitrary magnetic fields.The interaction of the electron with surface-optical (SO) phonons is used. Having calculatedthe ground state energy and the excited state energy of the magnetopolaron, we obtain thecyclotron resonance frequency of the magnetopolaron. The effect of the electron-SO phononinteraction decreases the cyclotron resonance frequency. Furthermore, with the increasingstrength of magnetic fields, the cyclotron resonance frequency of the magnetopolaron form = 1 (m = -1) increases (decreases) monotonously. When the confinement energy is muchless than the Landau quantization energy, our results tend to the bulk case correctly. Forthe same magnetic field strength, our results show that, the larger the confinement length ofthe quantum wire is, the smaller the absolute value of the electron-SO phonon interactionenergy and the cyclotron resonance frequency are.  相似文献   

20.
We have studied the magnetic field effects on the diamagnetic susceptibility and binding energy of a hydrogenic impurity in a quantum well-wire by taking into account spatially dependent screening. Using the effective-mass approximation within a variational scheme, binding energy and diamagnetic susceptibility of donor are obtained as a function of the magnetic field, length of the square quantum well-wire for different impurity positions. It is shown that the magnetic field effects on diamagnetic susceptibility can be more important for donors in quantum well-wires over a large range of wire dimensions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号