首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Vibrational Spectroscopy》2000,22(1-2):169-173
In the Y2O3:3Al2O3:4B2O3 system infrared absorption spectroscopy and X-ray diffraction have been used to study the solid-state reactions in the 600–1300°C temperature range. The expected YAl3(BO3)4 formation (whose optimum temperature is at about 1150°C) was proceeded and accompanied by the appearance of YBO3 and Al4B2O9 intermediate phases. At higher temperatures the Al18B4O33 phase was also identified with both methods. Based on these results, some chemical reactions were suggested.  相似文献   

2.
Borate, lithium borate and borophosphate powders were synthesized by the sol–gel method. Triethyl borate, lithium methoxide, and orthophosphoric acid were used as precursors for B2O3, Li2O, and P2O5, respectively. Powders were characterized by FTIR, DTA, XRD and SEM techniques. Powders from the Li2O–B2O3 system exhibited glassy features while borate and borophosphate powders contained mainly crystalline B2O3 according to XRD analysis. However, a 500 °C heat treatment transformed these crystalline powders into glass powders. Conversely, heat treatment of Li2O–B2O3 powders transformed their structure from glassy to crystalline (Li2B4O7). Chemical durability studies conducted in water at 60 °C showed that minor additions of P2O5 into borate and lithium borate powders improved their chemical durability significantly. Furthermore, Li2O and P2O5 acted synergistically on the chemical durability when added simultaneously to borate compositions.  相似文献   

3.
The effects of doping with CeO2 and calcination temperature on the physicochemical properties of the NiO/Al2O3 system have been investigated using DTA, XRD, nitrogen adsorption measurements at −196°C and decomposition of H2O2 at 30–50°C. The pure and variously doped solids were subjected to heat treatment at 300, 400, 700, 900 and 1000°C. The results revealed that the specific surface areas increased with increasing calcination temperature from 300 to 400°C and with doping of the system with CeO2. The pure and variously doped solids calcined at 300 and 400°C consisted of poorly crystalline NiO dispersed on γ-Al2O3. Heating at 700°C resulted in formation of well crystalline NiO and γ-Al2O3 phases beside CeO2 for the doped solids. Crystalline NiAl2O4 phase was formed starting from 900°C. The degree of crystallinity of NiAl2O4 increased with increasing the calcination temperature from 900 to 1000°C. An opposite effect was observed upon doping with CeO2. The NiO/Al2O3 system calcined at 300 and 400°C has catalytic activity higher than individual NiO obtained at the same calcination temperatures. The catalytic activity of NiO/Al2O3 system increased, progressively, with increasing the amount of CeO2 dopant and decreased with increasing the calcination temperature.  相似文献   

4.
The Er3+-doped Al2O3 nanopowders have been prepared by the sol-gel method, using the aluminium isopropoxide [Al(OC3H7)3]-derived γ-AlOOH sols with addition of the erbium nitrate [Er(NO3)3·5H2O]. The five phases of γ-(Al,Er)2O3, θ-(Al,Er)2O3, α-(Al,Er)2O3, ErAlO3, and Al10Er6O24 were detected with the 0–20 mol% Er3+-doped Al2O3 nanopowders at the different sintering temperature of 600–1200°C. The average grain size was increased from about 5 to 62 nm for phase transformation of undoped γ-Al2O3→α-Al2O3 at the sintering temperature from 600 to 1200°C. At the same sintering temperature, average grain size was decreased with increase of the Er3+ doping concentration. Infrared absorption spectra of γ-Al2O3 and θ-Al2O3 nanopowders showed the two broad bands of 830–870 and 550–600 cm−1, the three broad bands of 830–870, 750–760, and 550–600 cm−1, respectively. The infrared absorption spectra for the α-Al2O3 nanopowder showed three characteristic bands, 640, 602, and 453 cm−1. The two characteristic bands of 669 and 418 cm−1 for Er2O3 clusters were observed for the Er3+-doped Al2O3 nanopowders when Er3+ doping concentration was increased up to 2 mol%. The 796, 788, 725, 692, 688, 669, 586, 509, 459, and 418 cm−1 are the characteristic bands of Al10Er6O24 phase.  相似文献   

5.
Mesoporous yttrium aluminum garnet Y3Al5O12 powders were prepared using sol-gel technology proceeding from solutions of metal alkoxoacetylacetonates. Xerogel microstructure was studied by SEM, and the fact of mesopores being formed was established. The temperature range within which Y3Al5O12 crystallizes in a dynamic mode from the xerogel was determined to be 850?C950°C using an SDT Q600 TGA/DTA/DSC analyzer. A 1-h isothermal treatment of the xerogel was shown to reduce the garnet phase formation temperature to 800°C. At lower temperatures (400, 450 or 500°C), even long-term (6-h) calcination yielded X-ray amorphous powders with developed surfaces (specific surface areas were 230?C350 m2/g). Powder particle coarsening was studied upon sintering for 2 and 4 h at 1000, 1200, and 1400°C.  相似文献   

6.
Spark plasma sintering and hot compaction methods were used to obtain experimental samples of a composite material of the SiC?SiCw system with various modifying additives (AlN, B4C, HfB2, Y2O3, Al2O3, Si3N4). The effect of the modifying additives on the sintering process, physicomechanical, and thermal properties of the ceramic composite material was examined. The introduction of the modifying additives lowered the sintering temperature of silicon carbide produced by the hot compaction method by 200°C and that formed with spark plasma spark sintering by 300?450°C as compared with the sintering temperature of silicon carbide without additives.  相似文献   

7.
By thermoanalytical methods TG, DTG, DTA there have been investigated the processes occurring during the formation of ceramic materials on the basis of Al2O3, ZrO2, Si3N4, SiC,and inorganic binder. IR spectroscopy has been an additional research method. It's been determined that with the use of H3PO4 as the binder for ceramic materials, the mechanisms of thermal decomposition are connected with the following processes: 1. removal of weakly tied and crystallized water in the temperature range of120–230°C, the removal being characterized by the endothermic effect, 2. interaction of the initial powder components of the ceramic materials with orthophosphoric acid conditioned by a strong exothermic effect on the DTA curve in the range of 230–530°C, 3. overlapping of endo- and exo-effects, testifying to a complex mechanism of thermal transformations, 4.oxidizing of the non-reacted silicon at the temperature of 720(760)°C, an increase of mass is observed on the TG curve as a result of the formation of SiO2 – crystoballite. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

8.
The phase equilibria in the concentration triangle Bi2O3-BaB2O4-B2O3 of the BaO-Bi2O3-B2O3 system have been investigated by X-ray powder diffraction and DTA. Barium bismuth borates of the composition BaBi2B4O10 and BaBiB11O19 have been found to exist. These borates melt at 730 and 807°C, respectively. The quasi-binary sections have been determined. It has been shown that the isothermal section of the Bi2O3-BaB2O4-B2O3 in the subsolidus region at 600°C is characterized by 13 triangles of coexisting phases.  相似文献   

9.
The effect of ferric and manganese oxides dopants on thermal and physicochemical properties of Mn-oxide/Al2O3 and Fe2O3/Al2O3 systems has been studied separately. The pure and doped mixed solids were thermally treated at 400–1000°C. Pyrolysis of pure and doped mixed solids was investigated via thermal analysis (TG-DTG) techniques. The thermal products were characterized using XRD-analysis. The results revealed that pure ferric nitrate decomposes into Fe2O3 at 350°C and shows thermal stability up to1000°C. Crystalline Fe3O4 and Mn3O4phases were detected for some doped solids precalcined at 1000°C. Crystalline γ-Al2O3 phase was detected for all solids preheated up to 800°C. Ferric and manganese oxides enhanced the formation of α-Al2O3 phase at1000°C. Crystalline MnAl2O4 and MnFe2O4 phases were formed at 1000°C as a result of solid–solid interaction processes. The catalytic behavior of the thermal products was tested using the decomposition of H2O2 reaction. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

10.
Y3−xLuxAl3MgSiO12 (x = 0–3) garnet powders were synthesized by an aqueous sol–gel method based on metal chelates with 1,2-ethanediol in aqueous media. Target samples were characterized by powder X-ray diffraction (XRD), scanning electron microscopy and reflection spectra. XRD analysis revealed that sintering of polycrystalline Y3−xLuxAl3MgSiO12 powders at 1,600 °C results in single-phase garnet materials.  相似文献   

11.
Yttrium orthoborate crystallizes in the vaterite-type structure and has two polymorphous forms, viz. a low- und a high temperature one. DTA measurements of YBO3 confirmed a reversible phase transition with a large thermal hysteresis. The phase transition has been accurately characterized by the application of different heating and cooling rates (β). Consequently, the extrapolation of the experimental data to zero β yields the transition points at 986.9°C for the heating up and at 596.5°C for the cooling down cycle. These values correspond to samples just after treatment at 1350°C. For samples with a different ‘thermal history’ other phase transition temperatures are observed, (e.g. after having performed several heating and cooling cycles). The linear relationship between the associated DTA signal ΔT=T onsetT offset and the square root of the heating rate β was confirmed, but the relation between T onset and square root of β is not found here. From the empirical data a good linear fitting between T onset and ln(β+1) can be derived. From the kinetic analysis (Kissinger method) of the phase transformation of YBO3 an apparent activation energy of about 1386 kJ mol–1 for heating and of about 568 kJ mol–1 for cooling can be determined  相似文献   

12.
To date, the access to the substance class of borates containing nitrogen, for example, nitridoborates, oxonitridoborates, or amine borates, was an extreme effort owing to the difficult starting materials and reaction conditions. Although a number of compounds containing boron and nitrogen are known, no adduct of ammonia to an inorganic borate has been observed so far. A new synthetic approach starting from the simple educts CdO, B2O3, and aqueous ammonia under conditions of 4.7 GPa and 800 °C led to the synthesis of Cd(NH3)2[B3O5(NH3)]2 as the first ammine borate. We thoroughly characterized this compound on the basis of low‐temperature single‐crystal and powder X‐ray diffraction data, IR and Raman spectroscopy, and by quantum theoretical calculations. This contribution shows that the adduct of NH3 to the BO3 group of a complex B–O network can be stabilized, opening up a fundamentally new synthetic route to nitrogen‐containing borates.  相似文献   

13.
Phase equilibria in the BaO-Bi2O3-B2O3 system have been investigated by X-ray powder diffraction analysis and DTA. Quasi-binary sections have been determined, and an isothermal section of the system in the subsolidus region has been constructed. The BaO-Bi2O3-B2O3 ternary system has been divided into 22 triangles of coexisting phases. It has been found that four bismuth barium borates exist, namely, Ba3BiB3O9, BaBi2B4O10, BaBiB11O19, and BaBiBO4. Ba3BiB3O9 undergoes a phase transition at 850°C and exists up to 885°C, where it decomposes in the solid state. BaBiB11O19 and BaBi2B4O10 melt congruently at 807 and 730°C, respectively. BaBiBO4 melts incongruently at 780°C. X-ray powder diffraction data for the low-temperature polymorph of Ba3BiB3O9 are presented.  相似文献   

14.
The relationships between the sintering temperatures and the microwave dielectric properties of (1−x)Mg4Nb2O9-xB2O3 (x = 0.5–10 wt. %) compounds were investigated by the sol–gel method in order to reduce the sintering temperature in this study. A suitable amount of B2O3 doping was effective in allowing low sintering temperatures without a little detrimental effect on these dielectric properties of the Mg4Nb2O9 compounds. The variations in the dielectric constant (ε r ) and the quality factor (Q·f) of the Mg4Nb2O9 compounds depended on the amount of B2O3 doping and the sintering temperature. As a result, a ε r value of ~12.8 and a Q·f value of ~142,570 GHz were obtained when the Mg4Nb2O9 compound with x = 3% was sintered at 1,200 °C for 4 h. The temperature coefficient of resonant frequency (τ f ) of the 3%-B2O3 doping Mg4Nb2O9 compound slightly changed from −33 to −48 ppm/°C with an increased sintering temperature.  相似文献   

15.
The phase equilibria established in the system Al2 (MoO4 )3 –V2 O5 throughout the whole component concentration range up to 1000°C were investigated by DTA and XRD methods. The results are presented in the form of a phase diagram. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

16.
Glasses of the SiO2–P2O5–K2O–MgO–CaO–B2O3 system acting as nutrients carriers in the soil environment were synthesised by the melt-quenching technique. Thermal properties were studied using DTA/DSC methods and the influence of B2O3 and P2O5 content on thermal stability and crystallization process of these glasses was examined. The structure of the glass network was characterized by FTIR, 31P, and 11B MAS NMR. The chemical activity of the glasses in the 2 mass% citric acid solution was measured by the ICP-AES method. The analysis indicated that the formation of P–O–B units with chemically stable tetrahedral borate groups decreases the glass solubility in conditions simulating the soil environment.  相似文献   

17.
Composites in the TiB2-Na2O·B2O3·Al2O3 systems, TiB2-MBA (MB stands for sodium metaborate and A is Al2O3), were prepared by self-propagating high-temperature synthesis (SHS), in simultaneous mode. Selection of these compositions was ruled by the interesting properties of both TiB2 and double borates of alkali metal and aluminum. The structure of the obtained materials was evaluated by micro-Raman spectroscopy, from room temperature up to 600 °C, and X-ray photoelectron spectroscopy (XPS). Formation of the TiB2 and TiO2−xBx phases along with TiO2 as rutile were identified as titanium speciation in the grain phase embedded in a sodium aluminum borate matrix. Integration of the Raman spectra of the grain phases revealed a TiB2 content of 16.99% and 23.32% for the two composite investigated 2TiB2·2MBA and 3TiB2·5MBA. A constrained-width model for the spectral deconvolution of the high-frequency Raman band was forwarded to calculate the proportion of tetrahedral boron atoms (7.424%) in the blank borate matrix Na2B2O4·Al2O3 in solid phase.  相似文献   

18.
The thermal behaviour of CrO3 on heating up to 600°C in dynamic atmospheres of air, N2 and H2 was examined by thermogravimetry (TG), differential thermal analysis (DTA), IR spectroscopy and diffuse reflectance spectroscopy (DRS). The results revealed three major thermal events, depending to different extents on the surrounding atmosphere: (i) melting of CrO3 near 215°C (independent of the atmosphere), (ii) decomposition into Cr2(CrO4)3 at 340–360°C (insignificantly dependent), and (iii) decomposition of the chromate into Cr2O3 at 415–490°C (significantly dependent). The decomposition CrO3 → Cr2(CrO4)3 is largely thermal and involves exothermic deoxygenation and polymerization reactions, whereas the decomposition Cr2(CrO4)3 → Cr2O3 involves endothermic reductive deoxygenation reactions in air (or N2) which are greatly accelerated and rendered exothermic in the presence of H2. TG measurements as a function of heating rate (2–50°C min−1) demonstrated the acceleratory role of H2, which extended to the formation of Cr(II) species. This could sustain a mechanism whereby H2 molecules are considered to chemisorb dissociatively, and then spillover to induce the reduction. DTA measurements as a function of the heating rate (2–50°C min−1) helped in the derivation of non-isothermal kinetic parameters strongly supportive of the mechanism envisaged. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

19.
The Li4.4Al0.4Si0.6O4‐xY2O3 (x = 0 to 0.5) ion conductors were prepared by the Sol‐Gel method and examined in detail. The powder and sintered samples were characterized by DTA‐TG, XRD, SEM, and AC impedance techniques. The experimental results show that the conductivity and sinterability increased with the amount of excess Y2O3 in the silicate. The particle size of the powder samples is about 0.12 μm. The maximum conductivity at 16 °C is 2.925 × 10?5s·cm?1 for Li4.4Al0.4Si0.6O4‐0.3 Y2O3.  相似文献   

20.
The crystallization kinetic of the basalt glass ceramic of the oxide composition, (%): SiO2 − 50.82; Al2O3 − 12.05; Fe2O3 − 9.28; CaO − 15.48; MgO − 11.08; Na2O+K2O − 1.14; TiO2 − 0.15, with addition of 10% TiO2 as nucleating agent has been studied using thermal analysis under non-isothermal conditions. In this order, the non-isothermal DTA curves were obtained at different heating rates between 4 and 20°C min−1 in the temperature range of 25–1000°C using a Derivatograph-C (MOM, Hungary). The kinetic parameters of the crystallization process were calculated on the basis of Ozawa-Flynn-Wall, Friedman, Budrugeac-Segal and non-parametric kinetic methods.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号