首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 656 毫秒
1.
A series of acyclic Schiff base podands 14?C19 with lipophilic amide and ester end groups were synthesized in good yield and in a simple way. Their transition metal ions complexation was studied using conductometric method in acetonitrile (AN) at 25 °C. Schiff base podands 14?C16 showed a continuous decrease in the molar conductances in their complexation with Hg2+, Pb2+, Cu2+, Zn2+ and Cd2+ which begins to level off at a mole ratio of 1:1 crown-to-metal indicating the formation of a stable 1:1 complexes. The order of the stability constants of the metal ions studied with the Schiff base podands 14, 15 and 16 is: Hg2+ > Pb2+ > Cu2+ > Zn2+ > Cd2+ > Ag+. Metal ion complexation by acyclic diamide or diester podands involves presumably the oxygen atoms of the carbonyl groups in addition to the nitrogen atoms of the imino groups.  相似文献   

2.
Three novel thiaazacrown ethers 1, 2 and 3 were synthesized in a simple way and in high yield. The complex formation between Ag+, Cu2+, Zn2+, Pb2+, Hg2+ and Cd2+ metal cations with thiaazacrown ethers 1, 2 and 3 have been studied in acetonitrile:chloroform (1:1) binary solvent system using conductometric technique. The conductance data show that the stochiometry of the complexes with Ag+, Cu2+ and Zn2+ cations is 1:1 (L:M), but in the case of Pb2+ and Hg2+ cations, a 1:2 (L:M) complex is formed in solutions. The formation constants of the resulting 1:1 complexes were determined from the molar conductance-mole ratio data at 25 °C. It was found that the stability constants of 1-Ag2+, 2-Ag+ and 3-Ag+ complexes are higher than those of their corresponding Zn2+ and Cu2+ complexes and found to vary in order 2 for Ag+.  相似文献   

3.
Calix[4]arene based podands 1a of cone conformation and 1b of 1,3-alternate conformation possessing imine units and bearing anthracene moieties have been synthesized by a 1 + 2 Schiff base condensation in good yields and examined for their cation recognition abilities towards cations such as lithium, sodium, potassium, nickel, cadmium, copper, zinc, lead, silver and mercury ions by UV–vis and fluorescence spectroscopy. The calix[4]arene derivative 1b shows a selective fluorescence enhancement in presence of Cu2+ ions among the various metal ions tested (Li+, Na+, K+, Ni2+, Cd2+, Cu2+, Zn2+, Pb2+, Ag+ and Hg2+ ions). The colour of the solution changes from colourless to light yellow in the presence of Cu2+ ions. The stoichiometry of the complex formed between 1b and Cu2+ was found to be 1:1 as established by Job’s plot.  相似文献   

4.
Some dinaphthosulfide aza macrocycles (3–9) were synthesized based on the conventional route from the reaction of corresponding dinaphthosulfide diester and aliphathic diamines in refluxing methanol in good yields. Dinaphthosulfide diester were synthesized from the reaction of 1,1′-thiobis (2-hydroxy naphthalene) and methyl chloroacetate. The structures of these compounds were confirmed using IR, 1H NMR, 13C NMR, MASS spectroscopy and elemental analysis. Conductometric studies of the complexation of some metal ions with aza derivative 8 (TDN) in methanol as solvent implied the formation of 1:1 complexes. The stability of the 1:1 complexes of TDN decreases in the order Hg2+ >> Pb2+ > Cu2+ > Zn2+ > Ca2+ > Mg2+ > Cd2+ > Sr2+ > Ag+ > Ba2+.  相似文献   

5.
The synthesis and complexation properties of three new derivatives, one spirobiscalix[4]azacrown (1) and two calix[4]azacrown (2 and 3), are reported. Complexation studies of the three ligands toward transition and heavy metal cations have been carried out and monitored by UV absorption spectrophotometry in acetonitrile. Mononuclear complexes were detected for all complexes, whereas binuclear species (M2L) were also formed in the case of ligand 1 with Cu2+ and Pb2+. The extraction properties of 1, 2 and 3 toward Cu2+, Zn2+, Pb2+, Ag2+ and Cd2+ are also reported. The results showed that complexation is the main factor affecting extraction with ligands 2 and 3, while with ligand 1 it is not.  相似文献   

6.
A new (E, E)-dioxime (H 2 L) containing a diazadioxadithia macrocyclic moieties has been synthesized by reaction of an aromatic primary amine with cyanogendi-N-dioxide. The BF2 +-capped Ni2+ mononuclear complex of this new oxime has been synthesized using a precursor hydrogen-bridged mononuclear Ni2+ complex. The solvent extraction of transition metal cations by (3) and (6) with picrate anion into chloroform has been studied at 25 °C and UV-visible spectroscopy. The extractability and selectivity of transition metal picrates, (Pb2+, Ni2+, Co2+, Cd2+, Zn2+, Cu2+, Ag+) has been evaluated. The structures of new compounds are identified by using elemental analysis, 1H and 13C-NMR, IR and MS spectral data.  相似文献   

7.
From extraction experiments and $ \gamma $ -activity measurements, the exchange extraction constants corresponding to the general equilibrium M2+(aq) + Sr2+(nb) $ \Leftrightarrow $ M2+(nb) + Sr2+(aq) taking place in the two-phase water–nitrobenzene system (M2+ = Mg2+, Ca2+, Ba2+, Pb2+, Cu2+, Zn2+, Cd2+, $ {\hbox{UO}}_{2}^{2 + } $ , Mn2+, Co2+, Ni2+; 1 = macrocyclic lactam receptor–see Scheme 1; aq = aqueous phase, nb = nitrobenzene phase) were evaluated. Moreover, the stability constants of the M2+ complexes in nitrobenzene saturated with water were calculated; they were found to increase in the following cation order: Mg2+ < Co2+ < Cu2+, Mn2+, Ni2+ < Cd2+ < Ca2+ < Ba2+, Zn2+ < Pb2+ <  $ {\hbox{UO}}_{2}^{2 + } $ .
Scheme 1
Structural formula of 2,18-dichloro-9,10,11,12-tetrahydro-6H, 20H-dibenzo[l,o][1,11,4,8]dioxadiazacyclohexadecine-7,13(8H, 14H)-dione (abbrev. 1)  相似文献   

8.
Five aromatic azo dyes with hydroxyl groups (1–5) were designed and synthesized by coupling reactions. The relationships between structures of the compounds and the spectroscopic properties were investigated. The absorption spectra of these compounds upon titration with K+, Ca2+, Al3+, Mg2+, Ni2+, Mn2+, Cd2+, Cr3+, Fe3+, Cu2+, Zn2+, Co2+, Hg2+, and Pb2+ ions in neutral aqueous solutions were reported. The results are coincident with the calculation results using the density functional theory method. The high selectivity, excellent water solubility and simple synthetic process make 1-[(2-Hydroxyl)phenylazo]-2-naphthol (5) a potential sensor for sensing Fe3+ and Mn2+ with the naked eye. 1-[(2-hydroxyl)phenylazo]-2-naphthol-6-sulfonic acid (3) shows high selectivity for the colorimetric detection of Fe3+ and Co2+ among the tested metal ions. The detection limitations of 3 for determining Co2+ and Fe3+ were calculated to be 2.8 × 10?7 and 5.6 × 10?7 mol/L, respectively.  相似文献   

9.
From extraction experiments and γ-activity measurements, the exchange extraction constant corresponding to the equilibrium Ca2+(aq) + 1·Sr2+(nb) ? 1·Ca2+(nb) + Sr2+(aq) taking place in the two-phase water–nitrobenzene system (1 = beauvericin; aq = aqueous phase, nb = nitrobenzene phase) was evaluated as log K ex(Ca2+, 1·Sr2+) = 1.1 ± 0.1. Further, the stability constant of the 1·Ca2+ complex in nitrobenzene saturated with water was calculated for a temperature of 25 °C: log β nb(1·Ca2+) = 10.1 ± 0.2. Finally, by using quantum mechanical density functional level of theory calculations, the most probable structures of the non-hydrated 1·Ca2+ and hydrated 1·Ca2+·H2O complex species were predicted.  相似文献   

10.
From extraction experiments and γ-activity measurements, the exchange extraction constant corresponding to the equilibrium Ba2+(aq) + Sr2+(nb) ?1·Ba2+(nb) + Sr2+(aq) taking place in the two-phase water–nitrobenzene system (1 = beauvericin; aq = aqueous phase, nb = nitrobenzene phase) was evaluated as log K ex (Ba2+, Sr2+) = 1.2 ± 0.1. Further, the stability constant of the beauvericin–barium complex (abbrev. Ba2+) in nitrobenzene saturated with water was calculated for a temperature of 25 °C: log β nb (Ba2+) = 9.5 ± 0.2. Finally, by using quantum mechanical DFT calculations, the most probable structure of the Ba2+ complex species was predicted.  相似文献   

11.
The removal efficiencies of Cu2+, Cd2+, Ni2+, Pb2+, Fe2+, and Zn2+ from aqueous solution with olive stone activated carbon (OSAC) were investigated in this paper. Central composite design method was used to optimize the preparation of OSAC by chemical activation using potassium hydroxide (KOH) as chemical agent. The optimum conditions obtained were 715°C activation temperature, 2 hours activation time, and 1.53 impregnation ratio. This resulted in removal of 99.25% Cu2+, 94.98% Cd2+, 99.08% Ni2+, 99.33% Pb2+, 99.41% Fe2+, and 99.17% Zn2+, as well as 73.94% OSAC yield. The surface characteristics of the activated carbon (AC) prepared under optimized condition were examined by pore structure analysis, scanning electron microscopy, and Fourier transform infrared spectroscopy. The Brunauer–Emmett–Teller (BET) surface area, total pore volume, and average pore diameter of the prepared activated carbon were 886.72 m2/g, 0.507 cm3/g, and 4.22 nm, respectively. The equilibrium data of the adsorption was well fitted to the Langmuir and the highest value of adsorption capacity (Q) on the OSAC was found for Fe2+ (57.47 mg/g), followed by Pb2+ (22.37 mg/g), Cu2+ (17.83 mg/g), Zn2+ (11.14 mg/g), Ni2+ (8.42 mg/g), and Cd2+ (7.80 mg/g). The prepared OSAC can be used for efficient removal of metals from contaminated wastewater.  相似文献   

12.
The complexation reaction between 1,13-bis(8-quinolyl)-1,4,7,10,13-pentaoxatridecane ligand (Kryptofix5) and Zn2+, Ni2+, Co2+, Pb2+ and Cu2+ ions were studied conductometrically in acetonitrile solution. The formation constants of the resulting 1:1 complexes were calculated from the computer fitting of the molar conductance and absorbance measurements in various mole ratios. The enthalpy and entropy changes of the complexation reactions were derived from titration conductometry in acetonitrile at various temperatures. At 25 °C, the stability of the resulting complexes varied in the order Pb2+ > Zn2+ > Cu2+> Co2+> Ni2+.  相似文献   

13.
The crystal structures of MOFs [Cu(PDA)(Phen)(H2O)]2 · 5H2O (I) and [Cu(PZCA)2(H2O)2] · 2H2O (II) (H2PDA = pyridine-2,6-dicarboxylic acid, Phen = 1,10-phenanthroline, HPZCA = pyrazine-2-carboxylic acid, H2PZDA = pyrazine-2,3-carboxylic acid) have been prepared under hydrothermal conditions. These MOFs have been characterized by element analysis, single-crystal X-ray diffraction, thermogravimetric analyses and IR spectroscopy. 3D frameworks of MOFs I and II are fabricated from zero-dimensional (0D) motifs through hydrogen bonds and π-π interactions. In MOF II, the PZCA ligand comes from in situ decarboxylation of the part of pyrazine-2,3-dicarboxylic acid (H2PZDA). Luminescent emissions bands of MOF I in methanol have been measured at room temperature and it displays selectivity to Zn2+, Cu2+, Pb2+, and Cd2+ ions. Cyclic voltammetry of MOFs I and II showed that the Cu(II/I) couple is irreversible.  相似文献   

14.
A series of crescent aromatic oligothioamides(4, 6, 8, 15, and 18) bearing different number of sulfur atoms were designed and synthesized via thionation of their corresponding aromatic oligoamides(3, 5, and 7) using Lawesson's reagent. The X-ray structure of a trimeric analogue(13) revealed the presence of intramolecular three-center hydrogen bonds that are responsible for the rigidification of the molecular backbone. The extraction by these novel receptors toward some representative heavy metal cations(Zn2+, Cd2+, Co2+, Ni2+, Pb2+, and Cu2+) and alkali and alkaline earth metal cations(Li+, Na+, K+, Rb+, Cs+, Ca2+, and Sr2+) demonstrated high efficiency(83.5%–96.4%) and superior selectivity for Cu2+ over other selected metal cations. Particularly, the extractability was correlated to both the number of sulfur atoms and orientation of thiocarbonyl groups as revealed in the order: 6 4 18 15. This is in stark contrast to the oligoamides that only gave much lower extractability(5.9%–16.4%), suggestive of the importance of replacement of carbonyl oxygen atoms with sulfur atoms in the extraction of Cu2+. The complexation behavior of 4, 6, and 8 with Cu2+ was also examined by UV-Vis and NMR techniques.  相似文献   

15.
From extraction experiments and γ-activity measurements, the exchange extraction constants corresponding to the general equilibrium M2+ (aq) + SrL2+ (nb) $ \Leftrightarrow $ ML2+ (nb) + Sr2+ (aq) taking place in the two-phase water–nitrobenzene system (M2+ = Ca2+, Pb2+, Cu2+, Zn2+, Cd2+, $ {\text{UO}}_{2}^{2 + } $ , Mn2+, Co2+, Ni2+; L = hexaethyl p-tert-butylcalix[6]arene hexaacetate; aq = aqueous phase, nb = nitrobenzene phase) were evaluated. Moreover, the stability constants of the ML2+ complexes in nitrobenzene saturated with water were calculated; they were found to increase in the following order: Cd2+ < Ca2+ < Mn2+ < Cu2+, Zn2+ <  $ {\text{UO}}_{2}^{2 + } $ , Co2+ < Ni2+ < Sr2+ < Pb2+.  相似文献   

16.
A glassy carbon electrode was modified with gold hierarchical dendrites (Au HDs) by one-step electrodeposition in the presence of cytosine, which plays an important role in the formation of the Au HDs. This approach is simple, fast, feasible, controllable, without any seed, template, or surfactant. The modified electrodes were used for the simultaneous determination of Pb2+ and Cu2+ by square wave stripping voltammetry. The peak currents show good linear relationship with concentrations of Pb2+ and Cu2+ in the range of 5.0 to 15.0 μM. The recoveries of the spiked water samples are in the range of 94.0 %–107.4 % for Pb2+ and Cu2+, and their relative standard deviation are in the range of 2.7 %–4.3 % for Pb2+ and Cu2+, respectively (n?=?3).
Figure
Well-defined Au hierarchical dendrites (HDs) modified electrodes were prepared by a simple, fast, feasible and controllable electrochemical route. The modified electrode was developed for the simultaneous and sensitive detection of Pb2+ and Cu2+ by square wave stripping voltammetry.  相似文献   

17.
Novel metal organic frameworks including {(pipzH2)[Mn(py-2,3-dc)2]·7.75H2O}n, 1, {(pipzH2)[Zn(py-2,3-dc)2]·4H2O}n, 2, [Cd(py-2,3-dc)(H2O)3]n, 3 and {(pipzH2)[Hg4Cl10]}n, 4, in which pipz is piperazine and py-2,3-dcH2 is pyridine-2,3-dicarboxylic acid were synthesized applying a proton transfer ion pair i.e. (pipzH2)(py-2,3-dcH)2 and corresponding metallic salts and studied by IR, 1H NMR, 13C NMR spectroscopy and single crystal X-ray diffractometry. The space group of compounds 1 and 4 are P21/c and C2/c of monoclinic system, respectively. The crystal dimensions are a = 20.108(2) Å, b = 19.910(2) Å, c = 12.997(1) Å, β = 94.354(2)° for 1 and a = 15.940(1) Å, b = 11.2690(9) Å, c = 11.1307(9) Å, β = 90.685(2)° for 4. The crystal structures of 2 and 3 have been reported previously. However, their solution studies are discussed here. The compounds had all polymeric structures. Although ZnII, CdII and HgII were elements of the same group, their behavior against the ion pair was essentially different. Various supramolecular interactions mainly hydrogen bonds of the type O-H?O, N-H?O, C-H?O, N-H…Cl and C-H?Cl were observed in the structures. There was an unusual and huge water cluster in the structure of compound 1. The solution states of compounds 1–4 were studied and reported. The protonation constants of pipz and py-2,3-dc, the py-2,3-dc/pipz proton transfer equilibrium constants and stoichiometry and stability of the system with Mn2+, Zn2+, Cd2+ and Hg2+ ions in aqueous solution were investigated by potentiometric pH titrations.  相似文献   

18.
Fluorescent chemosensor 3 can sense Cu2+ ions (1-8 μM) even in the presence of elevated levels of Ni2+, Cd2+, Zn2+, Hg2+, Ag+ and Pb2+ (5000 μM). 3 can also analyze for Ag+ ions (50-500 μM) in the presence of Ni2+, Cd2+, Zn2+, Hg2+ and Pb2+ (5000 μM) but Cu2+ strongly interferes.  相似文献   

19.
A silica gel composite (denoted as 1–SG) doped with a proton-conductive metal–Schiff-base–POM-MOF, {[Cu3(L)2(H2O)4][Cu(DMF)4(SiW12O40)]·9H2O} n (1) (where L is N, N′-bis[1-(2-methoxyphenol-6-yl)-methylidene] hydrazine hydrate, DMF is dimethyl formamide, POM-MOF is polyoxometalates-based metal–organic framework), was prepared by sol–gel method. The structure of as-synthesized 1–SG was confirmed by infrared spectrometry and X-ray powder diffraction, and its proton conductivity was calculated based on electrochemical impedance spectroscopic measurement. It was found that the structural characteristics of complex 1 are retained successfully in the silica gel skeleton of as-prepared 1–SG. Besides, though 1–SG contains just 6.25 wt% complex 1, it exhibits good proton conductivities of as much as 1.51 × 10?3–1.26 × 10?2 S cm?1 in the temperature range of 25–100 °C under a relative humidity of 98 %; and in particular, it shows better proton conductivity than both complex 1 and silica gel at the same conditions, due to the presence of a large number of micropores and mesopores filled with “liquid”.  相似文献   

20.
The protonation and complex formation equilibria of two biodegradable aminopolycarboxylate chelants {dl-2-(2-carboxymethyl)nitrilotriacetic acid (GLDA) and 3-hydroxy-2,2??-iminodisuccinic acid (HIDS)} with Ni2+, Cu2+, Zn2+, Cd2+ and Pb2+ ions were investigated using the potentiometric method at a constant ionic strength of I?=?0.10?mol·dm?3 (KCl) in aqueous solutions at 25?±?0.1?°C. The stability constants of the proton?Cchelant and metal?Cchelant species for each metal ion were determined, and the concentration distributions of various complex species in solution were evaluated for each ion. The stability constants (log10 K ML) of the complexes containing Ni2+, Cu2+, Zn2+, Cd2+ and Pb2+ ions followed the identical order of log10 K CuL?>?log10 K NiL?>?log10 K PbL?>?log10 K ZnL?>?log10 K CdL for either GLDA (13.03?>?12.74?>?11.60?>?11.52?>?10.31) or HIDS (12.63?>?11.30?>?10.21?>?9.76?>?7.58). In each case, the constants obtained for metal?CGLDA complexes were larger than the corresponding constants for metal?CHIDS complexes. The conditional stability constants (log10 $ K_{\text{ML}}^{'} $ ) of the metal?Cchelant complexes containing GLDA and HIDS were calculated in terms of pH, and compared with the stability constants for EDTA and other biodegradable chelants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号