首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
FTIR spectra of polycrystalline samples of cytidine, pure and containing a small quantity of N(O)H or N(O)D groups (<20%), were measured in KBr pellets from 4000 to 400 cm(-1) at temperatures from 300 to 20K. For the first time the bands of the narrow isotopically decoupled proton stretching vibration mode (nu(1)) of OH- and NH- groups were found; their number corresponds to the number of H-bonds in crystal according to structural data. The FTIR spectra at low temperature in the out-of-plane bending nu(4) proton mode range (lower than 1000 cm(-1)) of N(O)H groups revealed narrow bands, which correspond to nu(1) bands together with several "extra" bands, which are influenced by the isotopic exchange and (or) cooling. All of them have their counterparts in the N(O)D-substance spectrum with an isotopic frequency ratio of 1.30-1.40. The "extra" bands are assigned to the H-bound OH and NH protons, which are disordered and cannot be seen with X-ray crystal structure analysis. The peak positions of both mode bands (expressed as the red shift of nu(1) or blue shift of nu(4) modes relatively free molecules) were used for the estimation of the energy of different H-bonds using previously established empirical correlations between spectral and thermodynamic parameters of hydrogen bonds. The correlation of the red shift and H-bond length is also confirmed for all five H-bonds of cytidine.  相似文献   

2.
FTIR and single crystal Raman spectra of (CH3)2NH2Al(SO4)2 x 6H2O have been recorded at 300 and 90 K and analysed. The shifting of nu1 mode to higher wavenumber and its appearance in Bg species contributing to the alpha(xz) and alpha(yz) polarizability tensor components indicate the distortion of SO4 tetrahedra. The presence of nu1 and nu2 modes in the IR spectrum and the lifting of degeneracies of nu2, nu3, and nu4 modes are attributed to the lowering of the symmetry of the SO4(2-) ion. Coincidence of the IR and Raman bands for different modes suggest that DMA+ ion is orientationally disordered. One of the H atoms of the NH2 group of the DMA+ ion forms moderate hydrogen bonds with the SO4(2-) anion. Al(H2O)6(3+) ion is also distorted in the crystal. The shifting of the stretching modes to lower wavenumbers and the bending mode to higher wavenumber suggest that H2O molecules form strong hydrogen bonds with SO4(2-) anion. The intensity enhancement and the narrowing of nu1SO4, deltaC2N and Al(H2O)6(3+) modes at 90 K confirm the settling down of the protons in the hydrogen bonds formed with H2O molecules and NH2 groups. This may be one of the reasons for the phase transition observed in the crystal.  相似文献   

3.
The FTIR spectra of pure NH and isotopically diluted (NH/ND and ND/NH) polycrystalline uracil and thymine were measured in the range 4000-400 cm(-1) at temperatures from 300 to 10K. For the first time, the essentially narrow bands corresponding to the uncoupled stretching (nu(1)) and out of plane bending (nu(4)) NH proton modes of uracil and thymine were observed in the solid phase. It was found that in the nu(4) region the spectra reveal more details on the H-bond interactions present in both solids than in the nu(1) range. The frequencies of the various bands observed in both spectral regions were used for estimation of the H-bond energy, using empirical correlations between this property and both the red shift of nu(1) and the blue shift of nu(4) that occur upon crystallization due to the establishment of the H-bonds. The results are compared with known thermodynamic, structural and theoretical data. The IR data also suggest that the H-bond networks of both crystals contain, besides the two NH...O=C bonds revealed by X-ray experiments, additional types of H-bonds, which do not show long range periodicity and, thus, cannot be detected by the conventional structural methods. The assignment of some other bands in the spectra of both substances was also reviewed.  相似文献   

4.
The FTIR spectra of both the pure NH and isotopically substituted ND (<10% and >90% D) polycrystalline cytosine were recorded in the range 400-4000 cm(-1) as a function of temperature (10-300 K). For the first time, uncoupled NH(D) stretching mode bands of amine and imine groups were observed in the spectra of isotopically diluted cytosine at low temperatures. These bands correspond to the three distinct H-bonds that are present in the crystal, in agreement with the available data obtained by structural methods. At least nine bands were observed below 1000 cm(-1) and, in consonance with their temperature and isotopic exchange behavior, were assigned to the NH proton out-of-the-plane bending modes. Six of these bands were found to correspond to additional "disordered" H-bonds, which could not be observed by structural methods. Empirical correlations of spectral and thermodynamic parameters enabled to estimate the contribution of the H-bonds to the sublimation enthalpy of the crystal, in agreement with independent experimental data.  相似文献   

5.
Raman and FTIR spectra of [Cu(H2O)6](BrO3)2 and [Al(H2O)6](BrO3)3 x 3H2O are recorded and analyzed. The observed bands are assigned on the basis of BrO3- and H2O vibrations. Additional bands obtained in the region of v3 and v1 modes in [Cu(H2O)6](BrO3)2 are due to the lifting of degeneracy of v3 modes, since the BrO3- ion occupies a site of lower symmetry. The appearance v1 mode of BrO3- anion at a lower wavenumber (771 cm(-1)) is attributed to the attachment of hydrogen to the BrO3- anion. The presence of three inequivalent bromate groups in the [Al(H2O)6](BrO3)3 x 3H2O structure is confirmed. The lifting of degeneracy of v4 mode indicates that the symmetry of BrO3- anion is lowered in the above crystal from C3v to C1. The appearance of additional bands in the stretching and bonding mode regions of water indicates the presence of hydrogen bonds of different strengths in both the crystals. Temperature dependent Raman spectra of single crystal [Cu(H2O)6](BrO3)2 are recorded in the range 77-523 K for various temperatures. A small structural rearrangement takes place in BrO3- ion in the crystal at 391 K. Hydrogen bounds in the crystal are rearranging themselves leading to the loss of one water molecule at 485 K. This is preceded by the reorientation of BrO3- ions causing a phase transition at 447 K. Changes in intensities and wavenumbers of the bands and the narrowing down of the bands at 77 K are attributed to the settling down of protons into ordered positions in the crystal.  相似文献   

6.
Five salts of 1,2,4,5-benzenetetracarboxylic acid (pyromellitic acid), [C6H2(COO)4H4], have been synthesized and investigated by infrared and Raman spectroscopy and by single crystal X-ray diffraction methods: sodium salt [Na2(H2O)2][C6H2(COO)4H2], potassium salt [K(H2O)3][C6H2(COO)4H3] and transition metal salts [M(H2O)6][C6H2(COO)4H2], which M = Mn, Ni and Zn. Crystal structures of all five compounds show short intramolecular asymmetric hydrogen bonds (SHB) between adjacent carboxyl groups with O...O distance average of 2.40 A. The Raman and infrared spectra reported indicate the presence of short hydrogen bonds in all salts, in agreement with the X-ray data. The O-H stretching mode [nu(OH)] had been observed at about 2500 cm(-1). Deuterated analogues were synthesized and their Raman spectra show that nu(OH)/nu(OD) ratio average is about unit. The symmetric [nu(sym)(O..H..O)] and asymmetric [nu(asym)(O..H..O)] stretching modes have been attributed about 300 and 870 cm(-1), respectively, in all salts, and for deuterated analogues, the ratio nu(OH)/nu(OD) to nu(sym)(O..H..O, O..D..O) is close to unit like it occurs in nu(OH). The vibrational modes, mainly SHB modes, are tentatively assigned by molecular orbital ab initio calculations of pyromellitic acid and anions [C6H2(COO)4H3]- and [C6H2(COO)4H2]2-. Geometry optimizations showed a good agreement with experimental data. Frequency calculation confirms the assignment of specific vibrational modes. Ab initio calculations show that nu(C=O) and nu(sym)(COO) are strongly coupled with in plane OH bending [delta(OH)]. In Raman spectra of deuterated analogues is observed a frequency shift of these bands.  相似文献   

7.
The 400-4000 cm(-1) FTIR spectra of pure NH and isotopically substituted (10 and 90% doped ND/NH) polycrystalline L-alanine were recorded in the temperature range 10-300 K. The observed temperature dependence and isotopic shifts behavior enabled to identify, in the spectra of the doped crystals, three well-separated bands ascribable to either the NH or ND stretching vibrations associated with the three different types of hydrogen bonds existing in the crystal. The observed red shifts of these bands relative to the frequency of a reference "free" NH (or ND) stretching mode were found to correlate well with the H-bond distances found in the crystal and provide an indirect way of estimating the enthalpies associated with each type of H-bond found in the crystal. In the low-frequency deformation and torsional spectral region (below 2000 cm(-1)), several bands, which were found to be affected by isotopic substitution, were identified as belonging to the NH3(+) group. Several bands show splitting at low temperatures, indicating the occurrence of a significant reorganization in the crystal structure, which with all probability results mainly from changes in the proton positions. Finally, the literature assignments of the IR spectra of both crystalline NH3(+) and ND3(+) L-alanine were revised taking into consideration their temperature dependence and behavior upon deuteration.  相似文献   

8.
Hydration changes of poly(2-methoxyethyl vinyl ether) (PMOVE) synthesized via living cationic polymerization have been investigated during a temperature-responsive phase separation in water by using infrared spectroscopy. An aqueous PMOVE solution has lower critical solution temperatures (LCSTs) of 66 degrees C in H2O and 65 degrees C in D2O at approximately 15 wt %. During phase separation, the C-H stretching (nu(C-H)) bands of PMOVE shift downward (red shift). In particular, the IR band assigned to the antisymmetric stretching vibration of the terminal methyl groups exhibits a remarkably large red shift by 16 cm-1. The band also exhibits a red shift with increasing polymer concentration at T < Tp. Density functional theory (DFT) calculations of the models of hydrated PMOVE indicate that the shift is due mainly to the breaking of hydrogen bonds (H-bonds) between the oxygen of the methoxy groups and water and partially to the breaking of the CH...O H-bond to them.  相似文献   

9.
We have investigated the polarized IR spectra of the hydrogen bond system in crystals of trans-styrylacetic acid C(6)H(5)CHCHCH(2)COOH, and also in crystals of the following three deuterium isotopomers of the compound: C(6)H(5)CHCHCH(2)COOD, C(6)H(5)CHCHCD(2)COOH and C(6)H(5)CHCHCD(2)COOD. The spectra were measured at room temperature and at 77K by a transmission method. The spectral studies were preceded by determination of the X-ray crystal structure. Theoretical analysis of the results concerned linear dichroic effects, the H/D isotopic and temperature effects, observed in the solid-state IR spectra of the hydrogen and of the deuterium bond, at the frequency ranges of the nu(OH) and the nu(OD) bands, respectively. Basic spectral properties of the crystals can be interpreted satisfactorily in terms of the "strong-coupling" theory, when based on a hydrogen bond dimer model. This model sufficiently explained not only a two-branch structure of the nu(OH) and the nu(OD) bands, and temperature-induced evolution of the crystalline spectra, but also the linear dichroic effects observed in the band frequency ranges. A vibronic mechanism was analyzed, responsible for promotion of the symmetry-forbidden transition in the IR for the totally symmetric proton stretching vibrations in centrosymmetric hydrogen bond dimers. It was found to be of minor importance, when compared with analogous spectral properties of arylcarboxylic acid, or of cinnamic acid crystals. These effects were ascribed to a substantial weakening of electronic couplings between the hydrogen bonds of the associated carboxyl groups and the styryl radicals, associated with the separation of these groups in styrylacetic acid molecules by methylene groups in the molecules.  相似文献   

10.
Tellurites may be subdivided according to formula and structure. There are five groups based upon the formulae (a) A(XO3), (b) A(XO3).xH2O, (c) A2(XO3)3.xH2O, (d) A2(X2O5) and (e) A(X3O8). Raman spectroscopy has been used to study rajite and denningite, examples of group (d). Minerals of the tellurite group are porous zeolite-like materials. Raman bands for rajite observed at 740, and 676 and 667 cm(-1) are attributed to the nu1 (Te2O5)(2-) symmetric stretching mode and the nu3 (TeO3)(2-) antisymmetric stretching modes, respectively. A second rajite mineral sample provided a more complex Raman spectrum with Raman bands at 754 and 731 cm(-1) assigned to the nu1 (Te2O5)(2-) symmetric stretching modes and two bands at 652 and 603 cm(-1) are accounted for by the nu3 (Te2O5)(2-) antisymmetric stretching mode. The Raman spectrum of dennigite displays an intense band at 734 cm(-1) attributed to the nu1 (Te2O5)(2-) symmetric stretching mode with a second Raman band at 674 cm(-1) assigned to the nu3 (Te2O5)(2-) antisymmetric stretching mode. Raman bands for rajite, observed at (346, 370) and 438 cm(-1) are assigned to the (Te2O5)(2-)nu2 (A1) bending mode and nu4 (E) bending modes.  相似文献   

11.
The 1H and 15N NMR spectra of several 15N-labeled pyridoxal-5'-phosphate model systems have been measured at low temperature in various aprotic and protic solvents of different polarity, i.e., dichloromethane-d2, acetonitrile-d3, tetrahydrofuran-d8, freon mixture CDF3/CDClF2, and methanol. In particular, the 15N-labeled 5'-triisopropyl-silyl ether of N-(pyridoxylidene)-tolylamine (1a), N-(pyridoxylidene)-methylamine (2a), and the Schiff base with 15N-2-methylaspartic acid (3a) and their complexes with proton donors such as triphenylmethanol, phenol, and carboxylic acids of increasing strength were studied. With the use of hydrogen bond correlation techniques, the 1H/15N chemical shift and scalar coupling data could be associated with the geometries of the intermolecular O1H1N1 (pyridine nitrogen) and the intramolecular O2H2N2 (Schiff base) hydrogen bonds. Whereas O1H1N1 is characterized by a series of asymmetric low-barrier hydrogen bonds, the proton in O2H2N2 faces a barrier for proton transfer of medium height. When the substituent on the Schiff base nitrogen is an aromatic ring, the shift of the proton in O1H1N1 from oxygen to nitrogen has little effect on the position of the proton in the O2H2N2 hydrogen bond. By contrast, when the substituent on the Schiff base nitrogen is a methyl group, a proton shift from O to N in O1H1N1 drives the tautomeric equilibrium in O2H2N2 from the neutral O2-H2...N2 to the zwitterionic O2-...H2-N(2+) form. This coupling is lost in aqueous solution where the intramolecular O2H2N2 hydrogen bond is broken by solute-solvent interactions. However, in methanol, which mimics hydrogen bonds to the Schiff base in the enzyme active site, the coupling is preserved. Therefore, the reactivity of Schiff base intermediates in pyridoxal-5'-phosphate enzymes can likely be tuned to the requirements of the reaction being catalyzed by differential protonation of the pyridine nitrogen.  相似文献   

12.
The effects of pH and ultraviolet (UV) light with ligated formic acid on mesoporous TiO2 were characterized by transmission Fourier transform infrared (FTIR) spectroscopy and compared with adsorbed formate complexes. Surface-modified anatase thin films were prepared from acidic aqueous nanoparticulate anatase suspensions diluted with methanol and ethanol. Bands assigned to carboxylic acid groups displayed unique bonding character in the ligated formic acid on the anatase surface. For increased proton concentrations in the films, separation in -COO stretching bands (delta nu) for formic acid increased (increase in frequency for nuC=O and decrease in frequency for nuC-O). With UV exposure, surface-bound organics were rapidly removed by photocatalytic oxidation at 40 degrees C and 40% relative humidity (RH). In addition, the delta nu of the formic acid bands decreased as organics were mineralized to carbonates and CO2 with UV light. Aqueous formic acid adsorption experiments showed a distinctly different bonding environment lacking carbonate, and the delta nu for the carboxylic groups indicated a bridging bidentate coordination. The delta nu of the bands increased with increasing proton concentration, with both bands shifting to higher wavenumbers. The shifts may be ascribed to the influence of protonation on surface charge and the effect of that charge on the electronegativity of carboxylate groups bound to the surface. As alcohols are used in the mesoporous TiO2 solar cell preparation, implications of these surface modifications to dye-sensitized photovoltaics are discussed.  相似文献   

13.
Polarized Raman spectral changes with respect to temperature were investigated for Pr(BrO3)3.9H2O single crystals. FTIR spectra of hydrated and deuterated analogues were also recorded and analysed. Temperature dependent Raman spectral variation have been explained with the help of the thermograms recorded for the crystal. Factor group analysis could propose the appearance of BrO3 ions at sites corresponding to C3v (4) and D3h (2). Analysis of the vibrational bands at room temperature confirms a distorted C3v symmetry for the BrO3 ion in the crystal. From the vibrations of water molecules, hydrogen bonds of varying strengths have also been identified in the crystal. The appearance upsilon1 mode of BrO3- anion at lower wavenumber region is attributed to the attachment of hydrogen atoms to the BrO3- anion. At high temperatures, structural rearrangement is taking place for both H2O molecule and BrO3 ions leading to the loss of water molecules and structural reorientation of bromate ions causing phase transition of the crystal at the temperature of 447 K.  相似文献   

14.
高岭石/甲酰胺插层的Raman和DRIFT光谱   总被引:9,自引:0,他引:9  
用Raman和漫反射红外光谱研究高岭石/甲酰胺插层反应机理及插层作用对高岭石微结构的影响.  相似文献   

15.
A series of the copper(II) complexes with tripodal tetradentate tris(pyridyl 2-methyl)amine-based ligands possessing the hydrogen-bonding 6-aminopyridine units (tapa, three amino groups; bapa, two amino groups; mapa, one amino group) have been synthesized, and their copper(II) complexes with a small molecule such as dioxygen and azide have been studied spectroscopically and structurally. The reaction of their Cu(II) complexes with NaN(3) have given the mononuclear copper complexes with azide in an end-on mode, [Cu(tapa)(N(3))]ClO(4) (1a), [Cu(bapa)(N(3))]ClO(4) (2a), [Cu(mapa)(N(3))]ClO(4) (3a), and [Cu(tpa)(N(3))]ClO(4) (4a) (tpa, no amino group). The crystal structures have revealed that the coordination geometries around the metal centers are almost a trigonal-bipyramidal rather than a square-planar except for 1a with an intermediate between them. The UV-vis and ESR spectral data indicate that the increase of NH(2) groups of ligands causes the structural change from trigonal-bipyramidal to square-pyramidal geometry, which is regulated by a combination of steric repulsion and hydrogen bond. The steric repulsion of amino groups with the azide nitrogen gives rise to elongation of the Cu-N(py) bonds, which leads to the positive shift of the redox potentials of the complexes. The hydrogen bonds between the coordinated azide and amino nitrogens (2.84-3.05 A) contribute clearly to the fixation of azide. The Cu(I) complexes with bapa and mapa ligands have been obtained as a precipitate, although that with tapa was not isolated. The reactions of the Cu(I) complexes with dioxygen in MeOH at -75 degrees C have given the trans-micro-1,2 peroxo dinuclear Cu(II) complexes formulated as [((tapa)Cu)(2)(O(2))](2+) (1c), [((bapa)Cu)(2)(O(2))](2+) (2c), and [((mapa)Cu)(2)(O(2))](2+) (3c), whose characterizations were confirmed by UV-vis, ESR, and resonance Raman spectroscopies. UV-vis spectra of 1c, 2c, and 3c exhibited intense bands assignable to pi(O(2)(2)(-))-to-d(Cu) charge transfer (CT) transitions at lambda(max)/nm (epsilon/M(-1)cm(-1)) = 449 (4620), 474 (6860), and 500 (9680), respectively. The series of the peroxo adducts generated was ESR silent. The resonance Raman spectra exhibited the enhanced features assignable to two stretching vibrations nu((16)O-(16)O/(18)O-(18)O)/cm(-1) and nu(Cu-(16)O/Cu-(18)O)/cm(-1) at 853/807 (1c), 858/812 (2c), 847/800 (3c), and at 547/522 (2c), 544/518 (3c), respectively. The thermal stability of the peroxo-copper species has increased with increase in the number of the hydrogen-bonding interactions between the peroxide and amino groups.  相似文献   

16.
Raman spectroscopy at 298 and 77K has been used to study the structure of likasite, a naturally occurring basic copper(II) nitrate of formula Cu3NO3(OH)5.2H2O. An intense sharp band is observed at 3522 cm(-1) at 298 K which splits into two bands at 3522 and 3505 cm(-1) at 77 K and is assigned to the OH stretching mode. The two OH stretching bands at 3522 and 3505 provide estimates of the hydrogen bond distances of these units as 2.9315 and 2.9028 angstroms. The significance of this result is that equivalent OH units in the 298 K spectrum become two non-equivalent OH units at 77 K suggesting a structural change by cooling to liquid nitrogen temperature. A number of broad bands are observed in the 298 K spectrum at 3452, 3338, 3281 and 3040 cm(-1) assigned to H2O stretching vibrations with estimates of the hydrogen bond distances of 2.8231, 2.7639, 2.7358 and 2.6436 angstroms. Three sharp bands are observed at 77 K at 1052, 1050 and 1048 cm(-1) attributed to the nu1 symmetric stretching mode of the NO3 units. Only a single band at 1050 cm(-1) is observed at 298 K, suggesting the non-equivalence of the NO3 units at 77 K, confirming structural changes in likasite by cooling to 77 K.  相似文献   

17.
New azobenzene derivatives, namely 3,5-dichloro, 2,6-dimethyl and 3-chloro-4-methyl derivatives of 2'-hydroxy-4'-octyloxyazobenzene were synthesized and their properties were compared with those of 4-chloro, 4-methyl and 4-nitroderivatives. Special attention was paid to the characteristics of intramolecular O-H...N hydrogen bond reflected in IR spectra of CCl(4) solutions and neat crystalline samples. The spectra were analyzed based on DFT calculations. In all cases of solutions very strong hydrogen bonds are manifested in broad bands centered at about 2700-2800 cm(-1) of low intensity typical of resonance assisted H-bonds. On the other hand, in cases of neat crystalline samples, a broad, intensified absorption is extended down to approximately 600 cm(-1) forming a continuum resembling a Hadzi's trio. However, neither broad maxima nor minima can be assigned to delta(OH) or gamma(OH) overtones. The studies of the H/D isotope effect on the continuum seem to indicate on the role of resonance couplings between nu(OH) vibrators of neighboring molecules as well as hot bands arising from the coupling between high and low frequency modes. These couplings modify the dynamic pattern of the potential for the proton motion leading to a decrease of the barrier for the proton transfer.  相似文献   

18.
HuperzineA(HupA),analkaloidisolatedfromChineseherbHuperziaserrataThunb[1],isapotentreversibleacetylcholinesterase(AChE)inhibitor[2]withhighefficacyandlowtoxicity(fig.1).Acetylcholine(ACh)isachemicalsubstance,whichcantransmitthesignalofnerveimpulse.Therearemany…  相似文献   

19.
The adsorption of neutral glycine onto amorphous silica was investigated both theoretically and experimentally. DFT calculations were performed at the BLYP-631++G** level using a cluster approach. Several possible configurations involving the formation of H bonds between glycine and one, two, or three silanol groups (SiOH) were considered. The most favorable bonding of glycine with one silanol group (45 kJ mol(-1)) occurs through the COOH moiety, thus forming a cycle in which the CO group is an H-bond acceptor whereas the acidic OH group is an H-bond donor. With two or three silanol groups, additional H bonds are formed between the amine moiety and the silanol groups, which leads to an increased adsorption energy (70 and 80 kJ mol(-1) for two and three silanol groups, respectively). Calculated nu(CO), delta(HNH), and delta(HCH) values are sensitive to the adsorption mode. A bathochromic shift of nu(CO) as compared to the nu(CO) of free glycine (calculated in the 1755-1790 cm(-1) range) is found for glycine in interaction with silanol(s). The more H bonds are formed between the COOH moiety and silanol groups, the higher the bathochromic shift. For delta(HNH), no shift is found for glycine adsorbed on one and two silanol groups (where the amine is either not bound or an H-bond donor), whereas a bathochromic shift is calculated with three silanols when the amine moiety is an H-bond acceptor. Experimental FTIR spectra performed at room temperature for glycine adsorbed at 160 degrees C on Aerosil amorphous silica exhibit bands at 1371, 1423, 1630, and 1699 cm(-1). The experimental/calculated frequencies have their best correspondence for glycine adsorbed on two silanol groups. It is important to note that the forms giving the best correspondence to experimental frequencies are the most stable ones.  相似文献   

20.
Cobalt and zinc salts of 1,2,4,5-benzenetetracarboxylic acid (pyromellitic acid), [C(6)H(2)(COO)(4)H(4)], have been synthesized and investigate by polarized Raman spectroscopy. These compounds present short intramolecular hydrogen bonds (SHB) between adjacent carboxyl groups. Raman spectra indicate the presence of this interaction in both salts. Three specific vibrational of SHB modes have been investigated: O-H-O symmetric [nu(sym)(OHO)] and asymmetric [nu(asym)(OHO)] stretching modes and O-H stretching mode [nu(O-H)], which they were observed around 300, 850 and 2500 cm(-1), respectively. In crystallographic point of view, the cobalt salt presents a symmetric SHB while the zinc salt presents an asymmetric SHB. In cobalt salt all three vibrational modes of O-H-O groups in polarized Raman spectra occur in A(g) orientation although in zinc salts two of them are observed in A(g) orientation and one in B(g). Spectra analysis indicate that nu(sym)(OHO) mode is observed as A(g) to cobalt salt and B(g) to zinc salt. This mode occurs in a crowded spectral region and its identification was made by deconvolution techniques. Comparing spectra of the two salts, it is observed a small difference in relative intensity and wavenumber shift of nu(sym)(OHO) (deviance of 43 cm(-1)) and nu(OH) (deviance of 21 cm(-1)) modes due probably to differences in O...O distance between salts and in orientation of pyromellitate anion in unit cell. The nu(asym)(OHO) mode does not present significant wavenumber shift due difference in SHB. The nu(OH) band presents a great potential for hydrogen bond studies due to the fact that in its vibrational region (around 2500 cm(-1)) it is not observed other vibrational modes of these compounds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号