首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Many-body Hamiltonians obtained from first principles generally include all possible non-local interactions. But in dynamical mean field theory the non-local interactions are ignored, and only the effects of the local interactions are taken into account. The truncation of the non-local interactions is a basis dependent approximation. We propose a criterion to construct an appropriate localized basis in which the truncation can be carried out. This involves finding a basis in which a functional given by the sum of the squares of the local interactions with appropriate weight factors is maximized under unitary transformations of basis. We argue that such a localized basis is suitable for the application of dynamical mean field theory for calculating material properties from first principles. We propose an algorithm which can be used for constructing the localized basis. We test our criterion on a toy model and find it satisfactory.  相似文献   

2.
3.
It is shown that a dynamical force sum rule is useful in analyzing the response of a finite electronic system to a uniform electric field that oscillates harmonically in time. The sum rule, which has been used previously in calculations of the response of atoms to electric fields, provides a direct test of electronic polarizability calculations and may lead to useful approximations for the electronic polarizability of metallic microstructures. We apply the sum rule to the case of a small metal sphere in the jellium model, and show that it directly leads to an approximation that is equivalent to the surface-plasmon-pole approximation for the red-shift of the surface plasmon frequency.  相似文献   

4.
Sum rule for the optical absorption of an interacting many-polaron gas   总被引:1,自引:0,他引:1  
A sum rule for the first frequency moment of the optical absorption of a many-polaron system is derived, taking into account many-body effects in the system of constituent charge carriers of the many-polaron system. In our expression for the sum rule, the electron-phonon coupling and the many-body effects in the electron (or hole) system formally decouple, so that the many-body effects can be treated to the desired level of approximation by the choice of the dynamical structure factor of the electron (hole) gas. We calculate correction factors to take into account both low and high experimental cutoff frequencies. Received 26 April 2000 and Received in final form 5 December 2000  相似文献   

5.
The “conserving and self-consistent” approximation scheme of Kadanoff and Baym is generalized to systems of particles of non-zero spin. The additional conservation law of the total spin of the system restricts the possible approximations for the self-energy part, and thus the approximations for the irreducible vertex part occuring in the equation for the correlation function. This guarantees, for instance, the correct behavior of the dynamical susceptibility in the long wave length limit. Two examples are discussed under these aspects: the Hartree-Fock and theT-matrix approximation for the self-energy part and the resulting susceptibility.  相似文献   

6.
A novel approach for GW-based calculations of quasiparticle properties for finite systems is presented, in which the screened interaction is obtained directly from a linear response calculation of the density-density correlation function. The conserving nature of our results is shown by explicit evaluation of the f-sum rule. As an application, energy renormalizations and level broadenings are calculated for the closed-shell Na9 + and Na21 + clusters, as well as for Na4. Pronounced improvements of conserving approximations to RPA-level results are obtained.  相似文献   

7.
A brief account of the zero temperature magnetic response of a system of strongly correlated electrons in strong magnetic field is given in terms of its quasiparticle properties. The scenario is based on the paramagnetic phase of the half-filled Hubbard model, and the calculations are carried out with the dynamical mean field theory (DMFT) together with the numerical renormalization group (NRG). As well known, in a certain parameter regime one finds a magnetic susceptibility which increases with the field strength. Here, we analyze this metamagnetic response based on Fermi liquid parameters, which can be calculated within the DMFT-NRG procedure. The results indicate that the metamagnetic response can be driven by field-induced effective mass enhancement. However, also the contribution due to quasiparticle interactions can play a significant role. We put our results in context with experimental studies of itinerant metamagnetic materials.  相似文献   

8.
We develop a general theory of a boson decomposition for both local and non-local interactions in lattice fermion models which allows us to describe fermionic degrees of freedom and collective charge and spin excitations on equal footing. An efficient perturbation theory in the interaction of the fermionic and the bosonic degrees of freedom is constructed in the so-called dual variables in the path-integral formalism. This theory takes into account all local correlations of fermions and collective bosonic modes and interpolates between itinerant and localized regimes of electrons in solids. The zero-order approximation of this theory corresponds to an extended dynamical mean-field theory (EDMFT), a regular way to calculate nonlocal corrections to EDMFT is provided. It is shown that dual ladder summation gives a conserving approximation beyond EDMFT. The method is especially suitable for consideration of collective magnetic and charge excitations and allows to calculate their renormalization with respect to “bare” RPA-like characteristics. General expression for the plasmonic dispersion in correlated media is obtained. As an illustration it is shown that effective superexchange interactions in the half-filled Hubbard model can be derived within the dual-ladder approximation.  相似文献   

9.
10.
In a simple model of a spinless particle moving in a finite square well potential influences of final state Born approximation and of various approximations in the electromagnetic operators on photoabsorption differential, total and integrated cross sections are investigated. While the Born approximation is very poor in all respects, the long wave length approximation turns out to be the best and reproduces the total cross section quite well. However, appreciable deviations occur in the differential cross section at intermediate energies. The integrated cross section slightly exceeds the classical sum rule resulting from nonanalyticity of the forward compton scattering amplitude, as is discussed in the limiting case of theδ-potential.  相似文献   

11.
《Physics letters. A》2006,359(6):712-717
In the theory of Bose-condensed systems, there exists the well known problem, the Hohenberg–Martin dilemma of conserving versus gapless approximations. This dilemma is analysed and it is shown that it arises because of the internal inconsistency of the standard grand ensemble, as applied to Bose systems with broken global gauge symmetry. A solution of the problem is proposed, based on the notion of representative statistical ensembles, taking into account all constraints imposed on the system. A general approach for constructing representative ensembles is formulated. Applying a representative ensemble to Bose-condensed systems results in a completely self-consistent theory, both conserving and gapless in any approximation.  相似文献   

12.
The problems associated with including relativistic effects in the non-energy-weighted Coulomb sum rule for electron scattering are discussed. A new formulation of the sum rule is proposed, and this sum rule is calculated under a variety of conditions within the framework of the independent-particle model. Ambiguities due to model dependence were found to be small, and the simple factor Z, the atomic number, was found to be a good approximation to the calculated values of the sum rule. This provides a basis against which correlations or more exotic effects can be measured.  相似文献   

13.
Recent progress in the theory of magnetism and electron correlations is reviewed to clarify the theories developed in the last decade and their mutual relations. A historical development of the theory of magnetism is outlined, and the dynamical coherent potential approximation (CPA) which completely takes account of the dynamical spin and charge fluctuations within the single-site approximation is introduced. Both the dynamical effects on various magnetic properties and the many-body band structure are shown to be explained on the same footing. It is shown that the dynamical CPA is equivalent to the other single-site theories of strongly correlated electrons: the many-body CPA, the dynamical mean-field theory (DMFT), and the projection operator method CPA (PM-CPA). These theories are elucidated with use of a common concept of effective medium or coherent potential. The effects of orbital degeneracy and the realistic calculation scheme are discussed with an emphasis on Hund’s rule coupling. Non-local theories of magnetism and electron correlations which go beyond the single-site approximation are presented. They include the molecular dynamics approach to the magnetic short range order, the dynamical cluster methods as a direct extension of the DMFT, and the self-consistent projection operator approach as an extension of the PM-CPA with use of the incremental cluster expansion. The current problems of their approaches and their future perspective are discussed.  相似文献   

14.
Due to their sensitivity to electron-correlation effects,CVV Auger-electron (AES) and appearance-potential spectroscopy (APS) can provide useful information on the electronic structure of solids. Correlations among the valence-band electrons (VV correlations) as well as correlations between the valence-band and the core electrons (CV correlations) are responsible for a variety of effects. StrongVV correlations are well known to give rise to sharp satellites in the spectra, which are related to localized two-hole (electron) final states. On the other hand, the screening of the core-hole potential in the initial state for AES, the sudden response of the valence-band electrons after the destruction of the core hole, and, for APS, the scattering of the valence-band electrons at the core hole are all consequences ofCV correlations. Up to now, however, little is known about the combined influence of both types of correlations on the spectra. We present a new theoretical approach that refers to the general case of a model system with arbitrary band-filling and arbitrary strengths ofVV as well asCV correlations. Remaining restrictions and simplifications concerning the degeneracy of the valence band, the transition matrix elements, etc. can be improved systematically. Of course, this generality can only be achieved at the expense of inevitable approximations in the theoretical formulation. The AES and APS intensities are given by properly defined three-particle Green functions, which are determined by use of a diagrammatic vertex-correction method that is based on the three-particle ladder approximation, which is the main idea of our approach. It is a direct generalization of the two-particle ladder approximation, which in the past has been applied for the calculation of two-particle Green functions that are related to the AES and APS intensities, ifCV correlations can be neglected.  相似文献   

15.
The asymmetric Hubbard model with hopping integrals dependent on an electron spin (particle sort) is studied using an approximate analytic method within the dynamical mean-field theory. The equations of motion for Hubbard operators followed by projecting and different-time decoupling are used for solving the single-site problem. Particle spectra are investigated at half-filling within various approximations (Hubbard-I, alloy-analogy and a generalization of the Hubbard-III approximation). At half-filling these approximations can describe only continuous gap opening in the spectrum. The approach is used to describe the system between two limit cases (the Falicov-Kimball model and the standard Hubbard model) with continuous transition where Uc is dependent on the value of hopping parameters of different particles.  相似文献   

16.
A new theoretical approach, based on the introduction of cumulants, to calculate thermodynamic averages and dynamical correlation functions at finite temperatures is developed. The method is formulated in Liouville instead of Hilbert space and can be applied to operators which do not require to satisfy fermion or boson commutation relations. The application of the partitioning and projection methods for the dynamical correlation functions is considered. The present method can be applied to weakly as well as to strongly correlated systems.  相似文献   

17.
Electrical conductivity, thermopower and thermal conductivity for a partially ionized plasma are expressed within an extended Zubarev approach by equilibrium correlation functions. The Green function technique is used to evaluate the correlation functions in different approximations. Improvements of the Lenard-Balescu approximation are considered, which account for dynamical screening effects and higher Born approximations for the electron-electron, electron-ion and electron-atom interaction.  相似文献   

18.
穆成富  王梓岳  何联毅 《中国物理C(英文版)》2019,43(9):094103-094103-21
We investigate current-current correlation functions, or the so-called response functions of a two-flavor Nambu-Jona-Lasino model at finite temperature and density. The linear response is investigated introducing the conjugated gauge fields as external sources within the functional path integral approach. The response functions can be obtained by expanding the generational functional in powers of the external sources. We derive the response functions parallel to two well-established approximations for equilibrium thermodynamics, namely mean-field theory and a beyond-mean-field theory, taking into account mesonic contributions. Response functions based on the mean-field theory recover the so-called quasiparticle random phase approximation. We calculate the dynamical structure factors for the density responses in various channels within the random phase approximation, showing that the dynamical structure factors in the baryon axial vector and isospin axial vector channels can be used to reveal the quark mass gap and the Mott dissociation of mesons, respectively. Noting that the mesonic contributions are not taken into account in the random phase approximation, we also derive the response functions parallel to the beyond-mean-field theory. We show that the mesonic fluctuations naturally give rise to three kinds of famous diagrammatic contributions: the Aslamazov-Lakin contribution, the self-energy or density-of-state contribution, and the Maki-Thompson contribution.Unlike the equilibrium case, in evaluating the fluctuation contributions, we need to carefully treat the linear terms in external sources and the induced perturbations. In the chiral symmetry breaking phase, we find an additional chiral order parameter induced contribution, which ensures that the temporal component of the response functions in the static and long-wavelength limit recovers the correct charge susceptibility defined using the equilibrium thermodynamic quantities. These contributions from mesonic fluctuations are expected to have significant effects on the transport properties of hot and dense matter around the chiral phase transition or crossover, where the mesonic degrees of freedom are still important.  相似文献   

19.
20.
We discuss a certain class of two-dimensional quantum systems which exhibit conventional order and topological order, as well as quantum critical points separating these phases. All of the ground-state equal-time correlators of these theories are equal to correlation functions of a local two-dimensional classical model. The critical points therefore exhibit a time-independent form of conformal invariance. These theories characterize the universality classes of two-dimensional quantum dimer models and of quantum generalizations of the eight-vertex model, as well as and non-abelian gauge theories. The conformal quantum critical points are relatives of the Lifshitz points of three-dimensional anisotropic classical systems such as smectic liquid crystals. In particular, the ground-state wave functional of these quantum Lifshitz points is just the statistical (Gibbs) weight of the ordinary two-dimensional free boson, the two-dimensional Gaussian model. The full phase diagram for the quantum eight-vertex model exhibits quantum critical lines with continuously varying critical exponents separating phases with long-range order from a deconfined topologically ordered liquid phase. We show how similar ideas also apply to a well-known field theory with non-Abelian symmetry, the strong-coupling limit of 2+1-dimensional Yang–Mills gauge theory with a Chern–Simons term. The ground state of this theory is relevant for recent theories of topological quantum computation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号