首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This study is motivated by the observation that the drag-reduction effectiveness achieved by the imposition of oscillatory spanwise wall motion declines with Reynolds number. The question thus posed is whether the decline is linked to the increasingly strong influence of large-scale outer structures in the log layer on the near-wall turbulence, in general, and the streak strength in the viscosity-affected layer, in particular – a process referred to as modulation. This question is addressed via an extensive statistical analysis of DNS data for a channel flow at a friction Reynolds number 1020, subjected to oscillatory spanwise wall motion at a nominal wall-scaled period of 100. The analysis rests on a separation of turbulent scales by means of the Empirical Mode Decomposition. This method is used to derive conditional statistics of small-scale motions and skin friction subject to prescribed intensity of large-scale motions – referred to as footprinting. It is shown that the large-scale fluctuations are responsible, directly on their own, for roughly 30% to the skin friction. Positive large-scale fluctuations are also shown to be the cause of a major amplification of small-scale streaks, relative to weak attenuation by negative fluctuations. This highly asymmetric process is likely to be indirectly influential on the drag-reduction process, although it is not possible to identify this indirect effect in quantitative terms as part of the present analysis.  相似文献   

2.
This work continues the studies of Khoo et al. (Exp. Fluids 29: 448–460, 2001), where experiments were performed in turbulent-channel and flat-plate boundary-layer flows using near-wall hot-wire probes. The probability density function (pdf) of the wall-shear stress and streamwise velocity fluctuations in the viscous sublayer, buffer region and beyond were compared and analyzed. The convective velocity U c of the streamwise velocity fluctuations in the very near-wall region was obtained using a two-point correlation technique. It was found that in the viscous sublayer, U c is approximately constant at 13u τ and 15u τ , respectively, for the channel and boundary-layer flows. Spectra data for the viscous sublayer are presented for the first time, and the normalized spectral plots for different flow conditions collapse at high frequencies or wavenumbers, thus indicating the possible presence of small-scale universality at different Reynolds numbers. The integral time scale corresponding to the streamwise velocity fluctuations in the viscous sublayer is also presented. Received: 18 October 2000/Accepted: 2 April 2001  相似文献   

3.
We present a generalised treatment of the wall boundary conditions for RANS computation of turbulent flows and heat transfer. The method blends the integration up to the wall (ItW) with the generalised wall functions (GWF) that include non-equilibrium effects. Wall boundary condition can thus be defined irrespective of whether the wall-nearest grid point lies within the viscous sublayer, in the buffer zone, or in the fully turbulent region. The computations with fine and coarse meshes of a steady and pulsating flow in a plane channel, in flow behind a backward-facing step and in a round impinging jet using the proposed compound wall treatment (CWT) are all in satisfactory agreement with the available experiments and DNS data. The method is recommended for computations of industrial flows in complex domains where it is difficult to generate a computational grid that will satisfy a priori either the ItW or WF prerequisites.  相似文献   

4.
The mechanisms of laminarization in wall-bounded flows have been investigated by performing direct numerical simulations (DNS) of turbulent channel flows. By decreasing Reynolds numbers systematically, the effects of the low Reynolds number are studied in connection with the near-wall turbulent structure and turbulent statistics. At approximately the critical Reynolds number, the turbulent skin friction is reduced, and the turbulent structure changes qualitatively in the very near-wall region. Instantaneous turbulent structures reveal that streamwise vortices, the cores of which are at y+ 10, disappear, although low speed streaks and Reynolds shear stress are still produced by larger streamwise vortices located in the buffer region y+ > 10. Sweep motions induced by these vortical structures are shifted toward the center of a channel and also significantly deterred, which may heighten the effects of the viscous sublayer over most of the channel section and suppress the regeneration mechanisms of new streamwise vortices in the very near-wall region. To investigate the details of how large-scale coherent vortices affect the viscous sublayer and the relevant small-scale streamwise vortices, a body force is virtually imposed in the wall-normal direction to enhance the large streamwise vortices. As a result, it is found that when they are sufficiently enhanced, the small-scale vortices reappear, and the sweep events are again dominant in the viscous sublayer.  相似文献   

5.
A direct numerical simulation (DNS) dataset of a turbulent boundary layer (TBL) with a step change from a smooth to a rough surface is analyzed to examine the characteristics of a spatially developing flow. The roughness elements are periodically arranged two-dimensional (2-D) spanwise rods, with the first rod placed 80θin downstream from the inlet, where θin denotes the inlet momentum thickness. Based on an accurate estimation of relevant parameters, clear evidence for mean flow universality is provided when scaled properly, even for the present roughness configuration, which is believed to have one of the strongest impacts on the flow. Compared to previous studies, it is shown that overshooting behavior is present in the first- and second-order statistics and is locally created either within the cavity or at the leading edge of the roughness depending on the type of statistics and the wall-normal measurement location. Inspection of spatial two-point correlations of the streamwise velocity fluctuations shows a continuous increase of spanwise length scales of structures over the rough wall after the step change at a greater growth rate than that over smooth wall TBL flow. This is expected because spanwise energy spectrum shows presence of much energetic wider structures over the rough wall. Full images of the DNS data are presented to describe not only predominance of hairpin vortices but also a possible spanwise scale growth mechanism via merging over the rough wall.  相似文献   

6.
Periodic wall oscillations in the spanwise or circumferential direction can greatly reduce the friction drag in turbulent channel and pipe flows. In a concentric annulus, the constant rotation of the inner cylinder can intensify turbulence fluctuations and enhance skin friction due to centrifugal instabilities. In the present study, the effects of the periodic oscillation of the inner wall on turbulent flows through concentric annulus are investigated by the direct numerical simulation (DNS). The radius ratio of the inner to the outer cylinders is 0.1, and the Reynolds number is 2 225 based on the bulk mean velocity Um and the half annulus gap H. The influence of oscillation period is considered. It is found that for short-period oscillations, the Stokes layer formed by the circumferential wall movement can effectively inhibit the near-wall coherent motions and lead to skin friction reduction, while for long-period oscillations, the centrifugal instability has enough time to develop and generate new vortices, resulting in the enhancement of turbulence intensity and skin friction.  相似文献   

7.
Direct numerical simulations of turbulent flow in a plane channel using spanwise alternatively distributed strips (SADS) are performed to investigate the characteristics of large-scale streamwise vortices (LSSVs) induced by small-scale active wall actuations, and their role in suppressing flow separation. SADS control is obtained by alternatively applying out-of-phase control (OPC) and in-phase control (IPC) to the wall-normal velocity component of the lower channel wall, in the spanwise direction. Besides the non-controlled channel flow simulated as a reference, four controlled cases with 1, 2, 3 and 4 pairs of OPC/IPC strips are studied at M =?0.2 and R e =?6,000, based on the bulk velocity and the channel half height. The case with 2 pairs of strips, whose width is Δz + =?264 based on the friction velocity of the non-controlled case, is the most effective in terms of generating large-scale motions. It is also found that the OPC (resp. IPC) strips suppress (resp. enhance) the coherent structures and that leads to the creation of a vertical shear layer, which is responsible for the LSSVs presence. They are in a statistically steady state and their cores are located between two neighbouring OPC and IPC strips. These motions contribute significantly to the momentum transport in the wall-normal and spanwise directions showing potential for flow separation suppression.  相似文献   

8.
The near wall regions in internal combustion engines contain a significant amount of the gaseous mass in the cylinder and thus have a high relevance for the amount of unburned hydrocarbons, the wall heat transfer and the thermal stratification in the cylinder. In this context in the following study the predictive capability of Large Eddy Simulation (LES) with respect to wall heat flux and thermal stratification during the compression stroke i.e. under non-reactive conditions in an Internal Combustion Engine (ICE) are investigated based on a comparison with Direct Numerical Simulations (DNS). Two different modeling approaches for the near wall region, the low Reynolds damping approach and the LES adapted model from Plengsaard and Rutland, have been tested. During the first half of the compression stroke the low Reynolds damping approach agreed well with the DNS data, but increasing deviations were observed after 270° CA (piston halfway up). The underprediction of the wall heat flux at later stages was found to stem from the underestimation of the y + values of the first cell centroid, compared to values obtained by evaluating the DNS data at the same location, and originates from the model used to determine the friction velocity. As a consequence of the underpredicted y + value, the cell is not located in the viscous sublayer as expected, and the temperature gradient which is needed for the heat flux calculation is underpredicted. The results of the LES wall heat transfer model from Plengsaard and Rutland on the other hand showed overall reasonable agreement with the DNS data, but the model strongly depended on the modeling constants. With respect to the increasing thermal stratification during the compression both methods were found to significantly under predict the DNS results. These findings are especially relevant for LES of auto ignition phenomena in engines, since ignition timing and location are known to strongly depend on the temperature distribution.  相似文献   

9.
Analysis of the skin friction coefficient for wall bounded viscoelastic flows is performed by utilizing available direct numerical simulation (DNS) results for viscoelastic turbulent channel flow. The Oldroyd-B, FENE-P and Giesekus constitutive models are used. First, we analyze the friction coefficient in viscous, viscoelastic and inertial stress contributions, as these arise from suitable momentum balances, for the flow in channels and pipes. Following Fukagata et al. (Phys. Fluids, 14, p. L73, 2002) and Yu et al. (Int. J. Heat. Fluid Flow, 25, p. 961, 2004) these three contributions are evaluated averaging available numerical results, and presented for selected values of flow and rheological parameters. Second, based on DNS results, we develop a universal function for the relative drag reduction as a function of the friction Weissenberg number. This leads to a closed-form approximate expression for the inverse of the square root of the skin friction coefficient for viscoelastic turbulent pipe flow as a function of the friction Reynolds number involving two primary material parameters, and a secondary one which also depends on the flow. The primary parameters are the zero shear-rate elasticity number, El0, and the limiting value for the drag reduction at high Weissenberg number, LDR, while the secondary one is the relative wall viscosity, μw. The predictions reproduce both types A and B of drag reduction, as first introduced by Virk (Nature, 253, p. 109, 1975), corresponding to partially and fully extended polymer molecules, respectively. Comparison of the results for the skin friction coefficient against experimental data shows good agreement for low and moderate drag reduction which is the region covered by the simulations.  相似文献   

10.
The direct numerical simulation(DNS) is carried out for the incompressible viscous turbulent flows over an anisotropic porous wall. Effects of the anisotropic porous wall on turbulence modifications as well as on the turbulent drag reduction are investigated. The simulation is carried out at a friction Reynolds number of 180, which is based on the averaged friction velocity at the interface between the porous medium and the clear fluid domain. The depth of the porous layer ranges from 0.9 to 54 viscous units. The permeability in the spanwise direction is set to be lower than the other directions in the present simulation. The maximum drag reduction obtained is about 15.3% which occurs for a depth of 9 viscous units. The increasing of drag is addressed when the depth of the porous layer is more than 25 wall units. The thinner porous layer restricts the spanwise extension of the streamwise vortices which suppresses the bursting events near the wall. However, for the thicker porous layer, the wall-normal fluctuations are enhanced due to the weakening of the wall-blocking effect which can trigger strong turbulent structures near the wall.  相似文献   

11.
A specially constructed hot-wire probe was used to obtain very near-wall velocity measurements in both a fully developed turbulent channel flow and flat plate boundary layer flow. The near-wall hot-wire probe, having been calibrated in a specially constructed laminar flow calibration rig, was used to measure the mean streamwise velocity profile, distributions of streamwise and spanwise intensities of turbulence and turbulence kinetic energy k in the viscous sublayer and beyond; these distributions compare very favorably with available DNS results obtained for channel flow. While low Reynolds number effects were clearly evident for the channel flow, these effects are much less distinct for the boundary layer flow. By assuming the dissipating range of eddy sizes to be statistically isotropic and the validity of Taylor's hypothesis, the dissipation rate ɛ iso in the very near-wall viscous sublayer region and beyond was determined for both the channel and boundary layer flows. It was found that if the convective velocity U c in Taylor's hypothesis was assumed to be equal to the mean velocity  at the point of measurement, the value of (ɛ+ iso)1 thus obtained agrees well with that of (ɛ +)DNS for y + ≥ 80 for channel flow; this suggests the validity of assuming U c= and local isotropy for large values of y +. However, if U c was assumed to be 10.6u τ , the value of (ɛ+ iso)2 thus obtained was found to compare reasonably well with the distribution of (ɛ+ iso)DNS for y +≤ 15. Received: 31 May 1999/Accepted: 20 December 1999  相似文献   

12.
The spanwise oscillation of channel walls is known to substantially reduce the skin-friction drag in turbulent channel flows. In order to understand the limitations of this flow control approach when applied in ducts, direct numerical simulations of controlled turbulent duct flows with an aspect ratio of A R = 3 are performed. In contrast to channel flows, the spanwise extension of the duct is limited. Therefore, the spanwise wall oscillation either directly interacts with the duct side walls or its spatial extent is limited to a certain region of the duct. The present results show that this spanwise limitation of the oscillating region strongly diminishes the drag reduction potential of the control technique. We propose a simple model that allows estimating the achievable drag reduction rates in duct flows as a function of the width of the duct and the spanwise extent of the controlled region.  相似文献   

13.
The turbulent pipe flow of a highly dilute aqueous cationic surfactant solution is investigated by means of a pulsed ultrasound Doppler method with special emphasis on the wall boundary layer. The velocity profiles are recorded for several Reynolds numbers at varying ages of the solution. The wall shear stress velocities u τ used for the normalization of the velocity profiles are determined by fitting the measured profiles to the universal linear velocity profile in the viscous sublayer. The theoretical pressure loss is then calculated from the numerical values of u τ and compared to the experimental values. Two different scaling methods are discussed for the velocity fluctuations concerning the correlation of the root-mean square values with the effect and the amount of drag reduction. It is shown that outer scaling with the mean velocity is appropriate for the detection of drag reduction in surfactant solutions, rather than inner scaling with the wall shear stress velocity, which is common practice in investigations of 'usual' turbulent flows.  相似文献   

14.
Vorticity stretching in wall-bounded turbulent and transitional flows has been investigated by means of a new diagnostic measure, denoted by Γ, designed to pick up regions with large amounts of vorticity stretching. It is based on the maximum vorticity stretching component in every spatial point, thus yielding a three-dimensional scalar field. The measure was applied in four different flows with increasing complexity: (a) the near-wall cycle in an asymptotic suction boundary layer (ASBL), (b) K-type transition in a plane channel flow, (c) fully turbulent channel flow at Re τ = 180 and (d) a complex turbulent three-dimensional separated flow. Instantaneous data show that the coherent structures associated with intense vorticity stretching in all four cases have the shape of flat ‘pancake’ structures in the vicinity of high-speed streaks, here denoted ‘h-type’ events. The other event found is of ‘l-type’, present on top of an unstable low-speed streak. These events (l-type) are further thought to be associated with the exponential growth of streamwise vorticity in the turbulent near-wall cycle. It was found that the largest occurrence of vorticity stretching in the fully turbulent wall-bounded flows is present at a wall-normal distance of y +?=?6.5, i.e. in the transition between the viscous sublayer and buffer layer. The associated structures have a streamwise length of ~200–300 wall units. In K-type transition, the Γ-measure accurately locates the regions of interest, in particular the formation of high-speed streaks near the wall (h-type) and the appearance of the hairpin vortex (l-type). In the turbulent separated flow, the structures containing large amounts of vorticity stretching increase in size and magnitude in the shear layer upstream of the separation bubble but vanish in the backflow region itself. Overall, the measure proved to be useful in showing growing instabilities before they develop into structures, highlighting the mechanisms creating high shear region on a wall and showing turbulence creation associated with instantaneous separations.  相似文献   

15.
Large Eddy Simulations for two flows separating from a two-dimensional hump in a duct are reported and discussed. The flows differ through the presence or absence of a synthetic slot-jet injected in a sinusoidal manner, i.e. at zero net mass-flow rate, close to the location of separation and intended to reduce (“control”) the extent of the separated region. Results reported include instantaneous visualisations, pre-multiplied spectra, wall-pressure distributions, streamfunction fields and profiles of velocity and second moments. For both flows, agreement between the simulations and the experimental results is generally good, especially in respect of the overall control effectiveness of the synthetic jet, despite the use of an approximate wall treatment bridging the viscous sublayer. Proper Orthogonal Decomposition of the velocity field is used to study structural features, and this shows that the most energetic mode in the base flow is representative of large streamwise vortices in the separated region, while in the controlled flow, most of the energetically dominant modes are associated with large spanwise vortices.  相似文献   

16.
Fully resolved direct numerical simulations (DNSs) have been performed with a high-order spectral element method to study the flow of an incompressible viscous fluid in a smooth circular pipe of radius R and axial length 25R in the turbulent flow regime at four different friction Reynolds numbers Re τ ?=?180, 360, 550 and $1\text{,}000$ . The new set of data is put into perspective with other simulation data sets, obtained in pipe, channel and boundary layer geometry. In particular, differences between different pipe DNS are highlighted. It turns out that the pressure is the variable which differs the most between pipes, channels and boundary layers, leading to significantly different mean and pressure fluctuations, potentially linked to a stronger wake region. In the buffer layer, the variation with Reynolds number of the inner peak of axial velocity fluctuation intensity is similar between channel and boundary layer flows, but lower for the pipe, while the inner peak of the pressure fluctuations show negligible differences between pipe and channel flows but is clearly lower than that for the boundary layer, which is the same behaviour as for the fluctuating wall shear stress. Finally, turbulent kinetic energy budgets are almost indistinguishable between the canonical flows close to the wall (up to y ?+??≈?100), while substantial differences are observed in production and dissipation in the outer layer. A clear Reynolds number dependency is documented for the three flow configurations.  相似文献   

17.
This study employed a direct numerical simulation (DNS) technique to contrast the plume behaviours and mixing of passive scalar emitted from line sources (aligned with the spanwise direction) in neutrally and unstably stratified open‐channel flows. The DNS model was developed using the Galerkin finite element method (FEM) employing trilinear brick elements with equal‐order interpolating polynomials that solved the momentum and continuity equations, together with conservation of energy and mass equations in incompressible flow. The second‐order accurate fractional‐step method was used to handle the implicit velocity–pressure coupling in incompressible flow. It also segregated the solution to the advection and diffusion terms, which were then integrated in time, respectively, by the explicit third‐order accurate Runge–Kutta method and the implicit second‐order accurate Crank–Nicolson method. The buoyancy term under unstable stratification was integrated in time explicitly by the first‐order accurate Euler method. The DNS FEM model calculated the scalar‐plume development and the mean plume path. In particular, it calculated the plume meandering in the wall‐normal direction under unstable stratification that agreed well with the laboratory and field measurements, as well as previous modelling results available in literature. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

18.
This paper presents the second validation step of a compressible discontinuous Galerkin solver with symmetric interior penalty (DGM/SIP) for the direct numerical simulation (DNS) and the large eddy simulation (LES) of complex flows. The method has already been successfully validated for DNS of an academic flow and has been applied to flows around complex geometries (e.g. airfoils and turbomachinery blades). During these studies, the advantages of the dissipation properties of the method have been highlighted, showing a natural tendency to dissipate only the under‐resolved scales (i.e the smallest scales present on the mesh), leaving the larger scales unaffected. This phenomenon is further enhanced as the polynomial order is increased. Indeed, the order increases the dissipation at the largest wave numbers, while its range of impact is reduced. These properties are spectrally compatible with a subgrid‐scale model, and hence DGM may be well suited to be used for an implicit LES (ILES) approach. A validation of this DGM/ILES approach is here investigated on canonical flows, allowing to study the impact of the discretisation on the turbulence for under‐resolved computations. The first test case is the LES of decaying homogeneous isotropic turbulence (HIT) at very high Reynolds number. This benchmark allows to assess the spectral behaviour of the method for implicit LES. The results are in agreement with theory and are even slightly more accurate than other numerical results from literature, obtained using a pseudo‐spectral (PS) method with a state‐of‐the‐art subgrid‐scale model. The second benchmark is the LES of the channel flow. Three Reynolds numbers are considered: Reτ=395, 590 and 950. The results are compared with DNS of Moser et al. and Hoyas et al., also using PS methods. Both averaged velocity and fluctuations are globally in good agreement with the reference, showing the ability of the method to predict equilibrium wall‐bounded flow turbulence. To show that the method is able to perform accurate DNS, a DNS of HIT at Reλ=64 and a DNS of the channel flow at Reτ=180 are also performed. The effects of the grid refinement are investigated on the channel flow at Reτ=395, highlighting the improvement of the results when refining the mesh in the spanwise direction. Finally, the modification of the ILES parameters, that is the Riemann solver and of the SIP coefficient, is studied on both cases, showing a significant influence on the choice of the Riemann solver. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

19.
A particular pressure-driven flow in a plane channel is considered, in which one of the walls moves with a constant speed that makes the mean shear rate and the friction at the moving wall vanish. The Reynolds number considered based on the friction velocity at the stationary wall (uτ,S) and half the channel height (h) is Reτ,S = 180. The resulting mean velocity increases monotonically from the stationary to the moving wall and exhibits a substantial logarithmic region. Conventional near-wall streaks are observed only near the stationary wall, whereas the turbulence in the vicinity of the shear-free moving wall is qualitatively different from typical near-wall turbulence. Large-scale-structures (LSS) dominate in the center region and their spanwise spacing increases almost linearly from about 2.3 to 4.2 channel half-heights at this Reτ,S. The presence of LSS adds to the transport of turbulent kinetic energy from the core region towards the moving wall where the energy production is negligible. Energy is supplied to this particular flow only by the driving pressure gradient and the wall motion enhances this energy input from the mean flow. About half of the supplied mechanical energy is directly lost by viscous dissipation whereas the other half is first converted from mean-flow energy to turbulent kinetic energy and thereafter dissipated.  相似文献   

20.
Mean‐flow three‐dimensionalities affect both the turbulence level and the coherent flow structures in wall‐bounded shear flows. A tailor‐made flow configuration was designed to enable a thorough investigation of moderately and severely skewed channel flows. A unidirectional shear‐driven plane Couette flow was skewed by means of an imposed spanwise pressure gradient. Three different cases with 8°, 34°and 52°skewing were simulated numerically and the results compared with data from a purely two‐dimensional plane Couette flow. The resulting three‐dimensional flow field became statistically stationary and homogeneous in the streamwise and spanwise directions while the mean velocity vector V and the mean vorticity vector Ω remained parallel with the walls. Mean flow profiles were presented together with all components of the Reynolds stress tensor. The mean shear rate in the core region gradually increased with increasing skewing whereas the velocity fluctuations were enhanced in the spanwise direction and reduced in the streamwise direction. The Reynolds shear stress is known to be closely related to the coherent flow structures in the near‐wall region. The instantaneous and ensemble‐averaged flow structures were turned by the skewed mean flow. We demonstrated for the medium‐skewed case that the coherent structures should be examined in a coordinate system aligned with V to enable a sound interpretation of 3D effects. The conventional symmetry between Case 1 and Case 2 vortices was broken and Case 1 vortices turned out to be stronger than Case 2. This observation is in conflict with the common understanding on the basis of the spanwise (secondary) mean shear rate. A refined model was proposed to interpret the structure modifications in three‐dimensional wall‐flows. What matters is the orientation of the mean vorticity vector Ω relative to the vortex vorticity vector ω v, that is, the sign of Ω · ω v. In the present situation, Ω · ω v > 0 for the Case 1 vortices causing a strengthening relative to the Case 2 vortices. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号