首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We propose a general multiscale approach for the mechanical behavior of three-dimensional networks of macromolecules undergoing strain-induced unfolding. Starting from a (statistically based) energetic analysis of the macromolecule unfolding strategy, we obtain a three-dimensional continuum model with variable natural configuration and an energy function analytically deduced from the microscale material parameters. The comparison with the experiments shows the ability of the model to describe the complex behavior, with residual stretches and unfolding effects, observed in different biological materials.  相似文献   

2.
Noncovalent interfaces play a vital role in inelastic deformation and toughening mechanisms in layered nanocomposites due to their dynamical recoverability. When interfacial engineering is applied to design layered nanocomposites, shear-lag analysis is usually implemented to evaluate the capability of interfacial loading transfer. Here, we introduce a multiscale shear-lag model that correlates macroscale mechanical properties with the molecular mechanisms to quantify the effects of interfacial configuration in graphene oxide(GO) layered nanocomposites. By investigating the mechanical responses of commensurate and incommensurate interfaces, we identify that the commensurate interface exhibits a pronounced size effect due to the nucleation and propagation of interfacial defects, whereas the incommensurate interface displays uniform deformation. Our predictions are further validated through large-scale molecular dynamics simulations for GO layered nanocomposites. This work demonstrates how size effects and interfacial configurations can be exploited to fabricate layered nanocomposites with superior mechanical properties despite relying on weak noncovalent interfaces.  相似文献   

3.
A computational method (CADD) is presented whereby a continuum region containing dislocation defects is coupled to a fully atomistic region. The model is related to previous hybrid models in which continuum finite elements are coupled to a fully atomistic region, with two key advantages: the ability to accomodate discrete dislocations in the continuum region and an algorithm for automatically detecting dislocations as they move from the atomistic region to the continuum region and then correctly “converting” the atomistic dislocations into discrete dislocations, or vice-versa. The resulting CADD model allows for the study of 2d problems involving large numbers of defects where the system size is too big for fully atomistic simulation, and improves upon existing discrete dislocation techniques by preserving accurate atomistic details of dislocation nucleation and other atomic scale phenomena. Applications to nanoindentation, atomic scale void growth under tensile stress, and fracture are used to validate and demonstrate the capabilities of the model.  相似文献   

4.
5.
6.
讨论了牛顿力学和拉格朗日力学中的力. 在牛顿力学中着重讨论了主动力, 约束和理想约束力. 在拉格朗日力学中着重讨论了广义力的两种分解方法.  相似文献   

7.
采用准连续介质方法模拟面心立方(FCC)铝单晶薄膜在纳米压痕下产生的变形过程.分别用四种不同的压头宽度,得出载荷-位移响应曲线和应变能变化曲线,发现压头宽度越大,晶体产生塑性变形的临界载荷越大;临界载荷的大小和采用能量理论预测的大小基本一致;模拟过程中,观察到位错成核现象,了解到载荷-位移响应曲线的突降是由位错成核现象所引起,四种情况中压头载荷的降幅大致相同;最后分析了模型在原子层次下的变形机理.  相似文献   

8.
This paper discusses some of the concept of mod-eling surgery outcome. It is also an attempt to offer a roadmap for progress. This paper may serve as a common groundof discussion for both communities i.e surgeons and com-putational scientist in its broadest sense. Predicting surgeryoutcome is a very difficult task. All patients are different,and multiple factors such as genetic, or environment con-ditions plays a role. The difficulty is to construct modelsthat are complex enough to address some of these significantmultiscale elements and simple enough to be used in clini-cal conditions and calibrated on patient data. We will pro-vide a multilevel progressive approach inspired by two ap-plications in surgery that we have been working on. One isabout vein graft adaptation after a transplantation, the otheris the recovery of cosmesis outcome after a breast lumpec-tomy. This work, that is still very much in progress, mayteach us some lessons. We are convinced that the digital rev-olution that is transforming the working environment of thesurgeon makes closer collaboration between surgeons andcomputational scientist unavoidable. We believe that "com-putational surgery" will allow the community to develop pre-dictive model of the surgery outcome and greatprogresses insurgery procedures that goes far beyond the operating roomprocedural aspect.  相似文献   

9.
10.
This research involves the multiscale characterization of strain-hardening cementitious composites under tensile loading. The sensitivity of cracking behavior to fiber dispersion is studied using a special form of lattice model, in which each fiber is explicitly represented. It is shown that the nonlocal modeling of fiber bridging forces is essential for obtaining realistic patterns of crack development and strain-hardening behavior. Crack count and crack size are simulated for progressively larger levels of tensile strain. The influence of fiber dispersion is clearly evident: regions with significantly fewer fibers act as defects, reducing strength and strain capacity of the material.  相似文献   

11.
《力学快报》2020,10(1):1-7
With the development of cutting-edge sciences and new technologies, we have to consider the size, the density, the hardness, the stiffness and other properties of engineering materials and structures beyond the conventional ranges, as well as their mechanical behavior in extreme environments, such as ultra-conventional temperature, speed, physical and chemical fields, and severe weather, and more effective theories and methods of mechanics are required. This paper first gives the fundamental definition and the scientific connotation of extreme mechanics, then reviews the studies of extreme mechanics from three aspects: the extreme properties, the extreme loads, and the discipline development, as well as major engineering and scientific challenges. The characteristics of extreme mechanics and major challenges in the aspects of mechanical theory,computational methods and experimental techniques are discussed. Prospectivei developments of extreme mechanics are suggested.  相似文献   

12.
13.
14.
On the basis of numerical data processing, it is shown that a joint analysis of singularities detected in an initial gas dynamic field and at the first level of its wavelet decomposition allows one to remove the most part of numerical artifacts caused by numerical errors in computations. The application of asymmetric wavelets for this decomposition leads to a displacement of discontinuities. It is also shown that the values of the field can be identified with the coefficients of its wavelet decomposition.  相似文献   

15.
多尺度嵌入式离散裂缝模型模拟方法   总被引:1,自引:0,他引:1  
天然裂缝性油藏和人工压裂油藏内裂缝形态多样,分布复杂,传统的离散裂缝模型将裂缝作为基岩网格的边界,采用非结构化网格进行网格划分,其划分过程复杂,计算量大。嵌入式离散裂缝模型划分网格时不需要考虑油藏内的裂缝形态,只需对基岩系统进行简单的网格剖分,可以大大降低网格划分的复杂度,从而提高计算效率。然而,在油藏级别的数值模拟和人工压裂裂缝下的产能分析中,仍然存在计算量巨大、模拟时间过长的问题。本文提出嵌入式离散裂缝模型的多尺度数值计算格式,使用多尺度模拟有限差分法研究嵌入式离散裂缝模型渗流问题。通过在粗网格上求解局部流动问题计算多尺度基函数,多尺度基函数可以捕捉裂缝与基岩间的相互关系,反映单元内的非均质性,因此该方法既有传统尺度升级法的计算效率,又可以保证计算精度,数值结果表明这是一种有效的裂缝性油藏数值模拟方法。  相似文献   

16.
17.
Multiscale mass-spring models of carbon nanotube foams   总被引:2,自引:0,他引:2  
This article is concerned with the mechanical properties of dense, vertically aligned CNT foams subject to one-dimensional compressive loading. We develop a discrete model directly inspired by the micromechanical response reported experimentally for CNT foams, where infinitesimal portions of the tubes are represented by collections of uniform bi-stable springs. Under cyclic loading, the given model predicts an initial elastic deformation, a non-homogeneous buckling regime, and a densification response, accompanied by a hysteretic unloading path. We compute the dynamic dissipation of such a model through an analytic approach. The continuum limit of the microscopic spring chain defines a mesoscopic dissipative element (micro-meso transition) which represents a finite portion of the foam thickness. An upper-scale model formed by a chain of non-uniform mesoscopic springs is employed to describe the entire CNT foam. A numerical approximation illustrates the main features of the proposed multiscale approach. Available experimental results on the compressive response of CNT foams are fitted with excellent agreement.  相似文献   

18.
FPU问题是一个经典非线性问题,其计算涉及多尺度分析。本文针对FPU问题,提出多尺度保辛摄动算法,该方法具有多尺度效应,可以按不同尺度显示计算结果,长时间计算保真,可以克服刚性问题,采用较大的积分步长,可以克服数值共振现象。数值算例显示了本文算法的有效性。  相似文献   

19.
20.
We propose a set of models for the post-irradiation deformation response of polycrystalline FCC metals. First, a defect- and dislocation-density based evolution model is developed to capture the features of irradiation-induced hardening as well as intra-granular softening. The proposed hardening model is incorporated within a rate-independent single crystal plasticity model. The result is a non-homogeneous deformation model that accounts for defect absorption on the active slip planes during plastic loading. The macroscopic non-linear constitutive response of the polycrystalline aggregate of the single crystal grains is then obtained using a micro–macro transition scheme, which is realized within a Jacobian-free multiscale method (JFMM). The Jacobian-free approach circumvents explicit computation of the tangent matrix at the macroscale by using a Newton–Krylov process. This has a major advantage in terms of storage requirements and computational cost over existing approaches based on homogenized material coefficients in which explicit Jacobian computation is required at every Newton step. The mechanical response of neutron-irradiated single and polycrystalline OFHC copper is studied and it is shown to capture experimentally observed grain-level phenomena.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号