首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
对100kg温压炸药坑道口部爆炸过程及冲击波传播过程进行了比例尺为1:6的缩比例数值模拟研究.通过与等质量TNT炸药模拟结果的对比,分析了温压炸药爆炸冲击波峰值超压、正压作用时间沿坑道纵深的变化规律,着重对不同伤亡等级下的冲击波毁伤范围进行了研究.结果表明:1温压炸药爆炸冲击波衰减缓慢,持续时间长,远场优势明显,在计算范围内,其峰值超压最高可达TNT的1.52倍,正压作用时间最高可达1.1倍;2拟合得到峰值超压沿坑道纵深衰减经验公式,为毁伤范围的确定奠定了基础;3拟合得到爆炸场特征方程,结合等死亡率方程及超压毁伤阈值,可以确定不同伤亡等级下的爆炸冲击波毁伤范围.  相似文献   

2.
温压炸药在野外近地空爆中的冲击波规律   总被引:1,自引:0,他引:1  
为了研究温压炸药在敞开空间爆炸中冲击波的规律,选取典型温压炸药制成不同量级的裸药柱进行野外近地空爆实验,同时用TNT进行对比实验,获取温压炸药与TNT的冲击波参数并拟合得到相似律公式。结果表明,温压炸药的冲击波超压峰值在中远场略高于TNT;在相同对比距离处,温压炸药的比冲量明显高于TNT,在对比距离小于2 m/kg1/3的近场,温压炸药的比冲量达到TNT的2倍。引入超压-比冲量曲线描述冲击波特征,表明当超压峰值相同时,温压炸药比冲量更大, 超压峰值在20~50 kPa的中度以下毁伤范围时,温压炸药的比冲量比TNT高40%~60%,可产生更严重的毁伤效应。冲量是爆炸冲击波的重要毁伤元素,应建立与冲量有关的方法评价温压炸药的威力。  相似文献   

3.
温压炸药在坑道内爆炸时会产生多种毁伤元,对坑道内人员和设备造成严重威胁。基于不同药量的温压炸药爆炸试验,对坑道内爆炸条件下温压炸药的爆炸特性开展了研究,分析了爆炸热效应演化特征、冲击波传播规律和氧浓度降低情况,讨论了坑道对铝粉后燃的约束作用规律以及形成高烈度后燃效应的药量条件。研究表明:温压炸药火球辐射亮度高于TNT,且其火球温度峰值超过TNT温度峰值的1.3倍。在火球演化过程中,火球在后燃阶段的温度峰值较火球形态刚稳定时提升超过10%。在冲击波传播规律方面,超压峰值与正压时间的TNT当量系数分别约为1.4与1.65。另外,铝粉后燃产生的压缩波对冲击波能够形成多种补充效果,陡峭升压的压缩波能够使冲击波峰值升高,持续时间长但升压速率慢的压缩波能够限制冲击波的衰减,延长整体正压作用时间。受坑道约束作用,温压炸药爆炸火球将与坑道壁面发生相互作用,进而提高铝粉的燃烧烈度。当温压炸药质量立方根与坑道直径的比值大于0.28 kg1/3/m时,将产生高烈度后燃效应。  相似文献   

4.
FAE爆炸场超压与威力的实验研究   总被引:7,自引:0,他引:7  
利用现场测试系统动态灵敏度标定技术,分别等精度测试了FAE和TNT爆炸场峰值超压。在此基础上获得了各自的爆炸波峰值超压随传播距离的拟合曲线和TNT当量比。结果表明:FAE爆炸场超压分布规律与TNT有显著区别,前者属于大体积云雾爆炸,爆炸场可划分为云雾爆轰区、云雾边缘区和冲击波作用区;在云雾爆轰区,超压平均值在2.6MPa左右,在小于2/3云雾半径的范围内比同质量的TNT低,在大于2/3的云雾半径范围则显著大于TNT;在冲击波作用区,环氧丙烷燃料的FAE爆炸超压约是TNT爆炸效果的5倍,超压均呈衰减趋势,但FAE衰减比TNT缓慢许多。  相似文献   

5.
固态燃料空气炸药空爆实验研究   总被引:1,自引:0,他引:1  
通过四组无约束固态燃料空气炸药(FAE)装置与等质量的TNT在野外开放空间的一次起爆对比实验,测得了不同配方组份FAE装置在不同距离的爆炸超压分布,FAE装置峰值超压比相同距离的TNT高1.14~1.6倍;并运用空气冲击波峰值超压公式计算出了FAE的等效爆炸TNT当量随距离的变化关系,在爆炸场边缘区,FAE装置爆炸当量达到了3.88倍TNT当量;通过高速摄影的图片得到了爆炸产生火球的持续时间和最大作用范围,与等质量TNT爆炸火球相比,FAE的优势明显;运用粉尘爆炸下极限浓度估算了云雾爆轰区半径,并分析了测量到的固态FAE爆炸场的压力分布单调衰减的原因;建议在保持超压不变的情况下,把提高爆温作为提高FAE爆炸性能的主要途径。  相似文献   

6.
为实现兼具高能量输出与低易损性两方面的要求,研发了一种以2,4-二硝基苯甲醚(DNAN)为载体的复合炸药DN-1.用爆炸压力测试系统研究了DN-1炸药的能量输出特性,并用隔板实验测试了DN-1的冲击波感度.结果表明,DN-1炸药的冲击波超压峰值是TNT的1.6倍,冲击波比能是TNT的1.67倍,冲击波感度L50=7.64mm.其综合性能优于TNT等传统炸药.  相似文献   

7.
温压炸药的爆炸温度   总被引:6,自引:0,他引:6  
根据温压炸药的爆炸特性,采用红外热成像仪研究温压炸药的爆炸温度。通过对实验结果的分析发现,与等量TNT相比,温压炸药爆炸云团温度较高,高温持续时间是TNT的2~5倍,高温云团体积可达TNT的2~10倍,体现了温压炸药相对于传统高能炸药的温度场优势。药剂被引发后所形成的高温环境,足以维持其中铝粉的后续快速燃烧反应,从而为增强爆炸冲击波提供帮助。  相似文献   

8.
为有效表征不同海拔坑道内爆炸冲击波的传播特征,利用非线性显式动力学有限元软件AUTODYN,研究了海拔高度对长直坑道内爆炸冲击波传播的影响规律,探讨了高海拔环境对坑道内冲击波传播的影响,基于量纲分析,建立了适用于不同海拔高度典型坑道内冲击波峰值超压的计算模型,并通过数值计算进行了验证。结果表明:随着海拔高度升高,坑道内爆炸冲击波波阵面传播速度与径向的冲击波参数偏差增大,平面波形成距离增加,冲击波峰值超压降低;在0~4 000 m范围内,海拔高度每升高1 000 m,冲击波冲量降低约0.91%。结合Sachs无量纲修正方法和量纲分析,推导出不同海拔高度冲击波峰值超压的理论分析模型,模型计算结果与数值计算结果的相对偏差不大于10%,能够为高海拔环境下坑道内爆炸冲击波的传播提供理论依据。  相似文献   

9.
针对高海拔或高空的低温、低压环境对炸药爆炸冲击波传播的影响,利用量纲分析理论和AUTODYN有限元软件,研究了低温、低压及海拔高度对炸药爆炸冲击波参量(峰值超压、比冲量和波阵面运动轨迹)的影响规律,建立了相应的计算公式,并通过数值模拟和实验数据进行了对比验证。结果表明,该计算公式可以有效预测低温和低压环境下炸药爆炸冲击波参量。环境压力降低,爆炸冲击波峰值超压和爆炸远场(比例距离Z>0.2 m/kg1/3)比冲量减小,冲击波传播速度增大。环境温度降低,冲击波比冲量增大,传播速度降低,峰值超压影响不大。海拔高度在0~9 000 m范围内,每升高1 000 m冲击波峰值超压和爆炸远场比冲量分别平均降低约3.9%和3.2%。海拔升高,爆炸近场冲击波传播速度升高,爆炸远场冲击波传播速度则降低。高海拔环境下低压对冲击波峰值超压和比冲量的影响大于低温,爆炸近场冲击波传播速度取决于低压的影响,爆炸远场冲击波传播速度取决于低温的影响。  相似文献   

10.
运用非线性显式动力有限元程序LS-DYNA,基于多物质Euler算法,对TNT炸药和乙炔-空气混合气体两种爆炸源在自由大气场中爆炸产生的冲击波荷载特征参数进行数值模拟,比较两种爆源产生的冲击波压力传播规律。基于爆能等效原理,按超压相等的原则给出了气体爆炸名义比例距离计算公式。结果表明,基于Euler算法可以较好地描述乙炔-空气混合气体爆炸空气冲击波传播规律,爆炸压力随着距爆源距离的增大而迅速衰减,且两种爆源产生的冲击波超压峰值误差随着冲击波传播距离的增大而逐渐减小。采用名义比例距离公式修正后,气体爆炸与炸药爆炸冲击波计算误差可以得到有效控制。当爆炸冲击波超压小于0.5MPa时,可以采用乙炔-空气混合气体代替化学炸药进行模爆器内爆炸实验加载。  相似文献   

11.
韩文娟  刘海 《力学与实践》2010,32(4):109-111
对《力学》中的物体自由度进行多方面分析,以深化教学、提高学生正 确分析物理问题的能力.使用实际教学分析的研究方法,在《力学》范围内讨论自由度与坐标、 自由与约束的关系并得以下结论: (1) 同一物体的自由度随其所在的``空间'不同而不同, 不因坐标系的选取不同而 异, 在同类参考系中不因参考系的动静而有别;(2)自由度遵循叠加原理. 讨论了质点系的总自由度及相关计算问题,并指出研究《力学》中自由度的意义.  相似文献   

12.
13.
14.
The present paper deals with development and design of new methods utilizing Wiedemann's effect for determination of state of strain in building structures. Wiedemann's effect and some features of torsional strain of magnetic field are the basis of new experimental method. Especially the point electromagnetic strain gages using the effect of pure torsion of electromagnetic field to enable universal examination. For strain-gage measurements, almost all physical quantities are used which can be related to the variation in length of the structures. From the electric strain measurements, the most commonly used methods are the measurements by resonance-wire strain gages or by electric-resistance strain gages. In this paper, electromagnetic strain gages are discussed using the Wiedemann effect, and the author describes some new measuring equipment and his own suggestions and methods based on an application of this effect.  相似文献   

15.
16.
17.
18.
It is well known that the problem on nonseparating potential flow of an incompressible fluid about an array of profiles reduces to an integral equation for a certain real function, determined on the contours of the profiles of the array. As such a function one can take, as was done, for instance, in [1–5], the relative velocity of the fluid on the profiles of the array. For arrays of profiles of arbitrary shape it is necessary to solve the corresponding integral equation numerically. In the particular examples of the calculation of aerodynamic arrays that are available [1–3] the numerical methods used were based on the approximate evaluation of contour integrals by rectangle formulas. As investigations showed, sizeable errors arose thereby in the approximate solution obtained, these being especially significant in the case of curved profiles of relatively small bulk. In the present paper a method for the numerical solution of the integral equation obtained in [5] is proposed. The method is based on the replacement of a profile of the array with an inscribed N polygon, the length of whose sides is of the order N–1 and whose internal angles are close to . Convergence with increasing N of the numerical solution to an exact solution of the integral equations at the reference points is demonstrated. Examples of the calculation are given.Novosibirsk. Translated from Izvestiya Akademii Nauk SSSR. Mekhanika Zhidkosti i Gaza, No. 2, pp. 105–112, March–April, 1972.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号