首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到11条相似文献,搜索用时 0 毫秒
1.
We focus on investigating a generic two-dimensional sine-Gordon equation in nonlinear optics. Based on a viable transformation, the bifurcation analysis of the equation is carried out in this paper. The phase portraits are given and different kinds of traveling wave solutions are obtained. The analytical results are also numerically simulated.  相似文献   

2.
This article discusses on the solution of the regularized long wave (RLW) equation, which is introduced to describe the development of the undular bore, has been used for modeling in many branches of science and engineering. A numerical method is presented to solve the RLW equation. The main idea behind this numerical simulation is to use the collocation and approximating the solution by radial basis functions (RBFs). To avoid solving the nonlinear system, a predictor‐corrector scheme is proposed. Several test problems are given to validate the new technique. The numerical simulation, includes the propagation of a solitary wave, interaction of two positive solitary waves, interaction of a positive and a negative solitary wave, the evaluation of Maxwellian pulse into stable solitary waves and the development of an undular bore. The three invariants of the motion are calculated to determine the conservation properties of the algorithm. The results of numerical experiments are compared with analytical solution and with those of other recently published methods to confirm the accuracy and efficiency of the presented scheme.© 2009 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 2010  相似文献   

3.
In this work, we consider a Fisher-Kolmogorov equation depending on two exponential functions of the spatial variables. We study this equation from the point of view of symmetry reductions in partial differential equations. Through two-dimensional abelian subalgebras, the equation is reduced to ordinary differential equations. New solutions have been derived and interpreted.  相似文献   

4.
A meshless method is proposed for the numerical solution of the two space dimensional linear hyperbolic equation subject to appropriate initial and Dirichlet boundary conditions. The new developed scheme uses collocation points and approximates the solution employing thin plate splines radial basis functions. Numerical results are obtained for various cases involving variable, singular and constant coefficients, and are compared with analytical solutions to confirm the good accuracy of the presented scheme. © 2008 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2009  相似文献   

5.
The purpose of this paper is to obtain the approximation solution of linear and strong nonlinear weakly singular Volterra integral equation of the second kind, especially for such a situation that the equation is of nonsmooth solution and the situation that the problem is a strong nonlinear problem. For this purpose, we firstly make a transform to the equation such that the solution of the new equation is as smooth as we like. Through modifying homotopy perturbation method, an algorithm is successfully established to solve the linear and nonlinear weakly singular Volterra integral equation of the second kind. And the convergence of the algorithm is proved strictly. Comparisons are made between our method and other methods, and the results reveal that the modified homotopy perturbation is effective.  相似文献   

6.
In this article, we propose a numerical scheme to solve the one‐dimensional undamped Sine‐Gordon equation using collocation points and approximating the solution using Thin Plate Splines (TPS) radial basis function (RBF). The scheme works in a similar fashion as finite difference methods. The results of numerical experiments are presented and are compared with analytical solutions to confirm the good accuracy of the presented scheme.© 2007 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2008  相似文献   

7.
三阶WNND格式的构造及在复杂流动中的应用   总被引:5,自引:0,他引:5  
引入Liu的加权(weight)思想,在NND格式的二阶模板基础上,构造了空间三阶精度的WNND格式.通过对线性波动方程、一维Euler方程和三维Navier-Stokes方程的数值模拟表明:WNND格式在不增加模板插值点的前提下,在对各种间断的分辨率和收敛特性等方面均优于NND格式.采用WNND格式对升力体外形高超声速流场数值模拟表明:升力体外形三维流场结构十分复杂,攻角从0°~50°变化时,背风面表面极限流线依次由不分离、开式分离向起始于鞍、结点组合的高阶奇点的分离方式转化,翼面横向分离亦随攻角增大而增大;垂直于体轴的横截面流动拓扑结构与张涵信给出的理论分析一致,大于20°攻角后,在部分横截面背风对称线上出现结构不稳定的鞍点相连现象.  相似文献   

8.
We investigate a generalized (3 + 1)-dimensional nonlinear wave equation, which can be used to depict many nonlinear phenomena in liquid containing gas bubbles. By employing the Hirota bilinear method, we derive its bilinear formalism and soliton solutions succinctly. Meanwhile, the first-order lump wave solution and second-order lump wave solution are well presented based on the corresponding two-soliton solution and four-soliton solution. Furthermore, two types of hybrid solutions are systematically established by using the long wave limit method. Finally, the graphical analyses of the obtained solutions are represented in order to better understand their dynamical behaviors.  相似文献   

9.
We present a high‐order spectral element method (SEM) using modal (or hierarchical) basis for modeling of some nonlinear second‐order partial differential equations in two‐dimensional spatial space. The discretization is based on the conforming spectral element technique in space and the semi‐implicit or the explicit finite difference formula in time. Unlike the nodal SEM, which is based on the Lagrange polynomials associated with the Gauss–Lobatto–Legendre or Chebyshev quadrature nodes, the Lobatto polynomials are used in this paper as modal basis. Using modal bases due to their orthogonal properties enables us to exactly obtain the elemental matrices provided that the element‐wise mapping has the constant Jacobian. The difficulty of implementation of modal approximations for nonlinear problems is treated in this paper by expanding the nonlinear terms in the weak form of differential equations in terms of the Lobatto polynomials on each element using the fast Fourier transform (FFT). Utilization of the Fourier interpolation on equidistant points in the FFT algorithm and the enough polynomial order of approximation of the nonlinear terms can lead to minimize the aliasing error. Also, this approach leads to finding numerical solution of a nonlinear differential equation through solving a system of linear algebraic equations. Numerical results for some famous nonlinear equations illustrate efficiency, stability and convergence properties of the approximation scheme, which is exponential in space and up to third‐order in time. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

10.
In this article, we present a strategy of using rectangular and triangular Bézier surface patches for nonelement representation of 3D boundary geometries for problems of linear elasticity. The boundary generated in this way is directly incorporated in the parametric integral equation system (PIES), which has been developed by the authors. The boundary values on each surface patch are approximated by Lagrange polynomials. Three illustrative examples are presented to confirm the effectiveness of the proposed boundary representation in connection with PIES and to show good accuracy of numerical results.© 2017 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 34: 51–79, 2018  相似文献   

11.
In this article, we study an explicit scheme for the solution of sine‐Gordon equation when the space discretization is carried out by an overlapping multidomain pseudo‐spectral technique. By using differentiation matrices, the equation is reduced to a nonlinear system of ordinary differential equations in time that can be discretized with the explicit fourth‐order Runge–Kutta method. To achieve approximation with high accuracy in large domains, the number of space grid points must be large enough. This yields very large and full matrices in the pseudo‐spectral method that causes large memory requirements. The domain decomposition approach provides sparsity in the matrices obtained after the discretization, and this property reduces storage for large matrices and provides economical ways of performing matrix–vector multiplications. Therefore, we propose a multidomain pseudo‐spectral method for the numerical simulation of the sine‐Gordon equation in large domains. Test examples are given to demonstrate the accuracy and capability of the proposed method. Numerical experiments show that the multidomain scheme has an excellent long‐time numerical behavior for the sine‐Gordon equation in one and two dimensions. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号