首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
A sensitive and specific LC-MS/MS assay for the determination of paclitaxel and its 3'p- and 6-alpha-hydroxy metabolites is presented. A 200 microL plasma aliquot was spiked with a 13C6-labeled paclitaxel internal standard and extracted with 1.0 mL tert-butylmethylether. Dried extracts were reconstituted in 0.1 M ammonium acetate-acetonitrile (1:1, v/v) and 25 microL volumes were injected onto the HPLC system. Separation was performed on a 150 x 2.1 mm C18 column using an alkaline eluent (10 mm ammonium hydroxide-methanol, 30:70, v/v). Detection was performed by positive ion electrospray followed by tandem mass spectrometry. The assay quantifies a range for paclitaxel from 0.25 to 1000 ng/mL and metabolites from 0.25 to 100 ng/mL using 200 microL human plasma samples. Validation results demonstrate that paclitaxel and metabolite concentrations can be accurately and precisely quantified in human plasma. This assay is now used to support clinical pharmacologic studies with paclitaxel.  相似文献   

2.
Atrasentan is an endothelin antagonist selective for the ET(A) receptor in development at Abbott Laboratories for the treatment of cardiovascular disease and cell proliferation disorders. A simple and sensitive chromatographic method for the determination of atrasentan in human plasma has been developed and validated. The analytical method involves acidification of the plasma samples with 0.3 N HCl prior to extraction with 1:1 (v:v) hexane/tert-butylmethylether. The organic extract was evaporated to dryness, reconstituted with 20:80 (v:v) acetonitrile/0.05 M K(2)HPO(4) and washed with 75:25 (v:v) hexane/tert-butylmethylether. The organic layer was discarded and the aqueous layer was injected into the HPLC. Atrasentan and internal standard (ABT-790) were separated from interference using a 250 x 4.6 mm, 5 microm, 120 A Phenomenex Spherisorb C(8) analytical column with a 50 x 4.6 mm, Alltech Absorbosphere 5 microm CN guard cartridge using a mobile phase consisting of 25:15:5:55 (v:v:v:v) acetonitrile/isopropanol/methanol/0.05 M K(2)HPO(4), pH 7.0, at a flow rate of 1.0 mL/min. Fluorescence detection was achieved using lambda(ex) 278 nm and lambda(em) 322 nm. For a 1.0 mL plasma sample volume, the limit of quantitation was approximately 200 pg/mL. The method was linear from 0.2 to 1300 ng/mL (r(2) = 0.9986). Inter- and intra-day assay RSD (n = 6) were less than 10%. Mean accuracy determinations showed the quality control samples to range between 94 and 99% of the theoretical concentration.  相似文献   

3.
A rapid, selective, and sensitive ion-paired reversed-phase high-performance liquid chromatographic method for determination of the new carbazate type of antihypertensive vasodilator agent cadralazine in human whole blood has been developed. Cadralazine was extracted from whole blood by adding 0.5 ml of acetonitrile to 1.0 ml of whole blood followed by salting-out of acetonitrile by the addition of potassium carbonate in excess. An aliquot of the salted-out acetonitrile was injected into the chromatographic system. A column packed with 3-microns octyl (C8) particles was used with an isocratic elution of 1% acetic acid and 5 mM hexanesulfonic acid-acetonitrile (70:30, v/v). The cadralazine was measured using ultraviolet detection at 250 nm and the assay was completed in less than 20 min and had a limit of quantitation of 10 ng/ml for a 100-microliters injection volume.  相似文献   

4.
Summary A simple high-performance liquid chromatographic method for the measurement of 8-Methoxypsoralen (8-MOP) in human plasma following a single 40mg dose has been described. After addition of phosphate-NaOH buffer, pH 12, and internal standard (trimethylpsoralen), the sample is vortex-mixed with diisopropylether. The resulting extract is analysed on a reverse phase column using phosphoric acid (0.05% v/v): acetonitrile (1:1) as mobile phase, and U.V. detection at 220nm. No interference from endogenous sources has been observed. The limit of sensitivity of the assay is 5ng/ml plasma. The measuring range is between 10–700ng 8-MOP/ml plasma, to be expected from oral doses of 0.6mg 8-MOP/kg body weight, and corresponds to the therapeutic plasma concentration. The relative standard deviation at 50ng/ml level of 8-MOP is 3.6%.  相似文献   

5.
Dimethyl benzoylphenyl urea (BPU) inhibited tubulin polymerization, caused microtubule depolymerization in vitro and demonstrated activity against solid tumors. BPU is being tested in phase I clinical trials. A rapid and specific method using LC/UV has been developed for quantitation of BPU in human heparin-containing plasma to perform pharmacokinetic and pharmacodynamic studies. BPU is extracted from plasma into acetonitrile:n-butyl-chloride using paclitaxel as the internal standard and separated on a Waters Symmetry C18 (3.9 x 150 mm, 5 microm) column with acetonitrile-water mobile phase (70:30, v/v) using isocratic flow at 1 mL/min for a run time of 5 min. Ultraviolet detection was utilized and performed at 225 nm for BPU and paclitaxel. The retention times were 1.9 min for paclitaxel and 4.1 min for BPU. Calibration curves were generated over the range of 0.01-10 microg/mL with coefficient of determination of > 0.99. The values for within-day and between-day precision were < or = 17.0% at the LLOQ and < or = 7.4% at the low, medium and high quality controls; accuracy was +/- 5.4%. Following administration of BPU 320 mg as a weekly oral dose to a patient with advanced solid tumor malignancies, the maximum plasma concentration was 2 micro g/mL and concentrations were quantifiable up to 168 h after administration. The lower limit of quantitation of 0.01 microg/mL allows for successful measurement of plasma concentrations in patients.  相似文献   

6.
The first liquid chromatography-tandem mass spectrometry (LC/MS/MS) method for determination of acetylsalicylic acid (aspirin, ASA) and one of its major metabolites, salicylic acid (SA), in human plasma using simvastatin as an internal standard has been developed and validated. For ASA analysis, a plasma sample containing potassium fluoride was extracted using a mixture of ethyl acetate and diethyl ether in the presence of 0.5% formic acid. SA, a major metabolite of ASA, was extracted from plasma using protein precipitation with acetonitrile. The compounds were separated on a reversed-phase column with an isocratic mobile phase consisting of acetonitrile and water containing 0.1% formic acid (8:2, v/v). The ion transitions recorded in multiple reaction monitoring mode were m/z 179 --> 137, 137 --> 93 and 435 --> 319 for ASA, SA and IS, respectively. The coefficient of variation of the assay precision was less than 9.3%, and the accuracy exceeded 86.5%. The lower limits of quantification for ASA and SA were 5 and 50 ng/mL, respectively. The developed assay method was successfully applied for the evaluation of pharmacokinetics of ASA and SA after single oral administration of Astrix (entero-coated pellet, 100 mg of aspirin) to 10 Korean healthy male volunteers.  相似文献   

7.
A sensitive and specific high-performance liquid chromatography/tandem mass spectrometry (HPLC/MS/MS) assay for the quantitative determination of gemcitabine (dFdC) and its metabolite 2',2'-difluorodeoxyuridine (dFdU) is presented. A 200-microL aliquot of human plasma was spiked with a mixture of internal standards, didanosine, lamivudine and fludarabine, and extracted using solid-phase extraction. Dried extracts were reconstituted in 1 mM ammonium acetate/acetonitrile (97:3, v/v) and 10-microL volumes were injected onto the HPLC system. Separation was achieved on a 150 x 2.1 mm C18 bonded phase endcapped with polar groups (Synergi Hydro-RP column) using an eluent composed of 1 mM ammonium acetate (pH 6.8)/acetonitrile (94:6, v/v). Detection was performed by positive ion electrospray ionization followed by MS/MS. The assay quantifies a range from 0.5 to 1000 ng/mL for gemcitabine and from 5 to 10,000 ng/mL for dFdU using 200 microL of human plasma sample. Validation results demonstrate that gemcitabine and dFdU concentrations can be accurately and precisely quantified in human plasma. This assay is used to support clinical pharmacologic studies with gemcitabine.  相似文献   

8.
A simple and sensitive high-performance liquid chromatographic method for the simultaneous assay of amiodarone and desethylamiodarone in plasma, urine and tissues has been developed. The method for plasma samples and tissue samples after homogenizing with 50% ethanol, involves deproteinization with acetonitrile containing the internal standard followed by centrifugation and direct injection of the supernatant into the liquid chromatograph. The method for urine specimens includes extraction with a diisopropyl ether-acetonitrile (95:5, v/v) mixture at pH 7.0 using disposable Clin-Elut 1003 columns, followed by evaporation of the eluate, reconstitution of the residue in methanol-acetonitrile (1:2, v/v) mixture and injection into the chromatograph. Separation was obtained using a Radial-Pak C18 column operating in combination with a radial compression separation unit and a methanol-25% ammonia (99.3:0.7, v/v) mobile phase. A wavelength of 242 nm was used to monitor amiodarone, desethylamiodarone and the internal standard. The influence of the ammonia concentration in the mobile phase on the capacity factors of amiodarone, desethylamiodarone and two other potential metabolites, monoiodoamiodarone (L6355) and desiodoamiodarone (L3937) were investigated. Endogenous substances or a variety of drugs concomitantly used in amiodarone therapy did not interfere with the assay. The limit of sensitivity of the assay was 0.025 micrograms/ml with a precision of +/- 17%. The inter- and intra-day coefficient of variation for replicate analyses of spiked plasma samples was less than 6%. This method has been demonstrated to be suitable for pharmacokinetic and metabolism studies of amiodarone in man.  相似文献   

9.
A simple and rapid high‐performance liquid chromatography–tandem mass spectrometric assay for determination of paclitaxel on rat dried blood spots was developed and validated. The extracted sample was chromatographed without further treatment using a reverse‐phase Oyster ODS3, 4.6 × 50 mm, 3 µm column with mass spectrometry detection. The mobile phase comprised of acetonitrile–water, 60:40 v/v, with a flow rate of 0.4 mL/min was used. The calibration was linear over the range 0.2–20 ng/mL. The limits of detection and quantification were 0.08 and 0.2 ng/mL, respectively. The intra‐ and inter‐day precision (CV%) and accuracy (relative error %) were less than 10 and 12%, respectively. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

10.
Kaletra is an important antiretroviral drug, which has been developed by Abbott Laboratories. It is composed of lopinavir (low-pin-a-veer) and ritonavir (ri-toe-na-veer). Both have been proved to be human immunodeficiency virus (HIV) protease inhibitors and have substantially reduced the morbidity and mortality associated with HIV-1 infection. We have developed and validated an assay, using liquid chromatography coupled with atmospheric pressure chemical ionization tandem mass spectrometry (LC/MS/MS), for the routine quantification of lopinavir and ritonavir in human plasma, in which lopinavir and ritonavir can be simultaneously analyzed with high throughput. The sample preparation consisted of liquid-liquid extraction with a mixture of hexane: ethyl acetate (1:1, v/v), using 100 microL of plasma. Chromatographic separation was performed on a Waters Symmetry C(18) column (150 mm x 3.9 mm, particle size 5 microm) with reverse-phase isocratic using mobile phase of 70:30 (v/v) acetonitrile: 2 mM ammonium acetate aqueous solution containing 0.01% formic acid (v/v) at a flow rate of 1.0 mL/min. A Waters symmetry C(18) guard column (20 mm x 3.9 mm, particle size 5 microm) was connected prior to the analytical column, and a guard column back wash was performed to reduce the analytical column contamination using a mixture of tetrahydrofuran (THF), methanol and water (45:45:10, v/v/v). The analytical run was 4 min. The use of a 96-well plate autosampler allowed a batch size up to 73 study samples. A triple-quadrupole mass spectrometer was operated in a positive ion mode and multiple reaction monitoring (MRM) was used for drug quantification. The method was validated over the concentration ranges of 19-5,300 ng/mL for lopinavir and 11-3,100 ng/mL for ritonavir. A-86093 was used as an internal standard (I.S.). The relative standard deviation (RSD) were <6% for both lopinavir and ritonavir. Mean accuracies were between the designed limits (+/-15%). The robust and rapid LC/MS/MS assay has been successfully applied for routine assay to support bioavailability, bioequivalence, and pharmacokinetics studies.  相似文献   

11.
A reversed-phase high-performance liquid chromatographic (HPLC) assay was developed for the antitumor anthrapyrazole analogue, oxantrazole (OX), in rat whole blood and tissues. Blood samples were mixed with equal volumes of a 25% (w/v) aqueous solution of L-ascorbic acid, whereas tissue samples were homogenized with 1.5-3 volumes of an L-ascorbic acid-methanol-water (1:10:1, w/v/v) mixture to prevent oxidative degradation of OX. Samples were then treated with 60% (v/v) perchloric acid (25-30 microliters/ml of stabilized sample) to precipitate proteins, and centrifuged, with the resultant supernatants analyzed on HPLC utilizing a C8 column. The mobile phase for blood and urine samples consisted of 8% (v/v) glacial acetic acid, 13% (v/v) acetonitrile, 79% (v/v) water, 0.16% (w/v) sodium acetate, and 0.05% (w/v) L-ascorbic acid (final pH 2.7), and was pumped at 1.8 ml/min. Tissue samples were eluted at 2 ml/min with a mobile phase consisting of 8% (v/v) glacial acetic acid, 12% (v/v) acetonitrile, 80% (v/v) water, 0.16% (w/v) sodium acetate, and 0.0;5% (w/v) L-ascorbic acid. OX and internal standard were detected at 514 nm and had retention times of 2.3 and 3.1 min, respectively. The limit of quantitation of OX was 25-50 ng/g. Recovery of OX from biological samples ranged from 50 +/- 0.9% in spleen to 102.8 +/- 1.8% in RG-2 glioma. The analytical method was applied to a pharmacokinetic study in rats.  相似文献   

12.
The validation and quantitative determination of the protease inhibitor, saquinavir, from confluent Caco-2 monolayers and from aqueous solution is reported. The high performance liquid chromatographic method consisted of an Ultramex 5 C(8) reverse-phase column (250 x 4.6 mm i.d.) and a mobile phase of acetonitrile:water:triethylamine (55:44:1, v/v/v, pH 6.5). Samples were analyzed using an ultraviolet detector at 238 nm, and diltiazem hydrochloride (66 micro g/mL) was used as an internal standard. A linear response over a broad concentration range (0.4-8.0 micro g/mL, r(2) = 0.997) was obtained. The limit of detection and quantitation was set at 0.14 and 0.4 micro g/mL, respectively. Over a 4 day period, the intra-day and inter-day precision ranged from 1 to 7% with a mean of 4%, and from 1 to 2% with a mean of 1.5%, respectively. Bench-top and storage stability of saquinavir was found to be satisfactory. The permeability of saquinavir through Caco-2 monolayers was estimated using this assay.  相似文献   

13.
A high-performance liquid chromatographic method for the determination of wogonoside in plasma of rats administrated orally with the traditional Chinese medicinal preparation Huang-Lian-Jie-Du decoction was developed. Sample preparation was carried out by protein precipitation with a mixture of acetonitrile and methanol (1:1, v/v). The extracted sample was separated on a Hypersil C(18) (150 x 5 mm i.d., 5 microm) analytical column by linear gradient elution using 0.05% (v/v) phosphoric acid (containing 5 mm sodium dihydrogen phosphate) and acetonitrile as mobile phase at a flow rate of 1.5 mL/min. The eluate was detected using a UV detector at 276 nm. The assay was linear over the range 0.109-7.0 microg/mL (R(2) = 0.9999, n = 5). Mean recovery was determined as 98.39%. Intra- and inter-day precisions (RSD) were < or =7.59%. The limit of quantitation was 0.109 microg/mL. After validation, the HPLC method developed was applied to investigate the preliminary pharmacokinetics of wogonoside in rat after oral administration of Huang-Lian-Jie-Du decoction.  相似文献   

14.
Paclitaxel is a front‐line antineoplastic drug used in chemotherapeutic modalities for treatment of various types of malignancies. However, its efficacy is limited by dose‐related toxicities. In this study, we have explored two important biological aspects of entrapping paclitaxel in PEG2000‐DSPE micelles. First, we evaluated the impact of this micellar delivery system on P‐glycoprotein (P‐gp)–paclitaxel interaction, and we investigated differences in plasma pharmacokinetics of free and micelle‐entrapped paclitaxel. For quantification of paclitaxel, an LC–MS/MS method was developed. Paclitaxel was extracted from samples using a simple one‐step protein precipitation. Chromatographic conditions included a C18 column with a mobile phase consisting of 0.1% formic acid in acetonitrile–water (60:40, v /v) pumped at 1 mL/min. The lower limit of quantitation in both plasma and cell lysate was 1.0 ng/mL. The quantitative linear range was 1–1000 ng/mL. In addition, P‐gp efflux studies on free and micellar paclitaxel showed the proficiency of PEG2000‐DSPE micelles in evading P‐gp‐mediated efflux, thus increasing paclitaxel uptake. Furthermore, the micellar paclitaxel levels were maintained in the body for longer time as compared with taxol, which is desirable for increasing the efficacy of paclitaxel in cancer treatment.  相似文献   

15.
A simple, rapid and sensitive LC‐UV method was developed and validated for the determination of paclitaxel (PTX) in rabbit plasma and tissues. A 2 mL aliquot of acetonitrile and 10 μL ammonium acetate (pH 5.0, 6 m ) as extraction agents were used to markedly increase the extraction recoveries and greatly reduce the endogenous substances. The separation was achieved on a C18 column at 30 °C using an acetonitrile–ammonium acetate buffer (pH 5.0, 0.02 m ; 55:45, v/v) at a flow rate of 1.0 mL/min; UV detection was used at 227 nm. Good linearity was obtained between 0.025 and 10,000 µg/mL for plasma and between 0.025–200,000 µg/g for tissue samples (r > 0.999). The limit of detection was 6 ng/mL in plasma, 8 ng/g in heart and 12.5 ng/g in other tissues. The limit of quantitation was 25 ng/mL in plasma and heart, 125 ng/g in other tissues. The intra‐ and inter‐day assays of precision and accuracy for all bio‐samples ranged from 1.38 to 9.60% and from 83.6 to 114.5%, respectively. The extraction recoveries ranged from 70.1 to 109.5%. Samples were stable during three freeze–thaw cycles or stored in a freezer at ?20 °C for 30 days. The assay method was successfully applied to a study of the pharmacokinetics and tissue distribution of novel PTX lung targeting liposomes. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

16.
A highly sensitive and specific LC-MS/MS method has been developed and validated for the estimation of rhein with 100 microL human plasma using celecoxib as an internal standard (IS). The API-4,000 Q-Trap LC-MS/MS was operated under multiple reaction-monitoring mode using the electrospray ionization technique. The assay procedure involved extraction of rhein and IS from human plasma with acetonitrile, which yielded consistent recoveries of 36.01 and 65.85% for rhein and IS, respectively. The total chromatographic run time was 5.0 min and the elution of rhein and IS occurred at approximately 1.60 and 3.96 min, respectively. The resolution of peaks was achieved with 0.01 m ammonium acetate (pH 6.0):acetonitrile:methanol (30:58:12, v/v) on an Inertsil ODS-3 column. The method was proved to be accurate and precise at a linearity range of 0.005-5.00 microg/mL with a correlation coefficient (r) of >or=0.995. The lower limit of quantitation was 0.005 microg/mL. The intra- and inter-day precision and accuracy values were found to be within the assay variability limits as per the FDA guidelines. Rhein was found to be stable in the battery of stability studies. The application of the assay to pre-clinical pharmacokinetic studies confirmed the utility of the assay to derive pharmacokinetic parameters.  相似文献   

17.
A family of azo and stilbene derivatives ( 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 ) are synthesized, and their chromo‐fluorogenic behavior in the presence of nerve‐agent simulants, diethylchlorophosphate (DCP), diisopropylfluorophosphate (DFP), and diethylcyanophosphate (DCNP) in acetonitrile and mixed solution of water/acetonitrile (3:1 v/v) buffered at pH 5.6 with MES, is investigated. The prepared compounds contain 2‐(2‐N,N‐dimethylaminophenyl)ethanol or 2‐[(2‐N,N‐dimethylamino)phenoxy]ethanol reactive groups, which are part of the conjugated π‐system of the dyes and are able to give acylation reactions with phosphonate substrates followed by a rapid intramolecular N‐alkylation. The nerve‐agent mimic‐triggered cyclization reaction transforms a dimethylamino group into a quaternary ammonium, inducing a change of the electronic properties of the delocalized systems that results in a hypsochromic shift of the absorption band of the dyes. Similar reactivity studies are also carried out with other “non‐toxic” organophosphorus compounds, but no changes in the UV/Vis spectra were observed. The emission behaviour of the reagents in acetonitrile and water–acetonitrile 3:1 v/v mixtures is also studied in the presence of nerve‐agent simulants and other organophosphorous derivatives. The reactivity between 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 and DCP, DCNP, or DFP in buffered water–acetonitrile 3:1 v/v solutions under pseudo first‐order kinetic conditions, using an excess of the corresponding simulant, are studied in order to determine the rate constants (k) and the half‐life times (t1/2=ln2/k) for the reaction. The detection limits in water/acetonitrile 3:1 v/v are also determined for 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 and DCP, DCNP, and DFP. Finally, the chromogenic detection of nerve agent simulants both in solution and in gas phase are tested using silica gel containing adsorbed compounds 1 , 2 , 3 , 4 , or 5 with fine results.  相似文献   

18.
A highly sensitive and specific LC-MS/MS method has been developed and validated for the estimation of torcetrapib (TTB) with 100 microL hamster/dog plasma using DRL-16126 as an internal standard (IS). The API-4000 Q Trap LC-MS/MS was operated under multiple-reaction monitoring mode using the electrospray ionization technique. The assay procedure involved extraction of TTB and IS from plasma with acetonitrile, which yielded consistent recoveries of 65.73 and 94.01% for TTB and 79.68 and 90.70% for IS in hamster and dog plasma, respectively. The total chromatographic run time was 3.0 min and the elution of TTB and IS occurred at approximately 2.25 and 2.20 min, respectively. The resolution of peaks was achieved with 0.01 m ammonium acetate:acetonitrile (15:85, v/v) at a flow rate of 0.40 mL/min on an Inertsil ODS-3 column. The method was proved to be accurate and precise at linearity range of 1.00-200 ng/mL with a correlation coefficient (r) of > or = 0.993. The method was rugged with 1.00 ng/mL as the lower limit of quantitation. TTB was stable in the battery of stability studies. The application of the assay to preclinical pharmacokinetic studies confirmed the utility of the assay to derive hamster/dog pharmacokinetic parameters.  相似文献   

19.
A highly sensitive and specific LC-MS/MS method has been developed and validated for the estimation of doxofylline (DFL) with 300 microL human serum using imipramine as the internal standard (IS). The API-3,000 LC-MS/MS was operated under multiple reaction-monitoring mode using the electrospray ionization technique. The assay procedure involved direct precipitation of DFL and IS from human serum with acetonitrile. The resolution of peaks was achieved with formic acid (pH 2.5): acetonitrile (10:90, v/v) on an Amazon C(18) column. The total chromatographic run time was 3.0 min and the elution of DFL and IS occurred at approximately 1.46 and 2.15 min, respectively. The MS/MS ion transitions monitored were 267.5 --> 181.1 for DFL and 281.1 --> 86.2 for IS. The method was proved to be accurate and precise at linearity range of 1.00-5,000 ng/mL with a correlation coefficient (r) of >or=0.999. The method was rugged with 1.00 ng/mL as lower limit of quantitation. The intra- and inter-day precision and accuracy values were found to be within the assay variability limits as per the FDA guidelines. The developed assay method was applied to a pharmacokinetic study in human volunteers following oral administration of DFL tablet.  相似文献   

20.
Paclitaxel was purified using high-performance displacement chromatography (HPDC) technique, but not by the mechanism of HPDC. On small scale, paclitaxel was extracted with methanol from dry needles of Taxus canadensis and was enriched by extracting with chloroform after removing water-soluble hydrophilic components and hexane-soluble hydrophobic components. Then, 93-99% purity of paclitaxel was obtained using the HPDC technique. On large scale, taxanes were enriched by solvent partitioning between acetic acid/MeOH/H(2)O and hexane and extracted with CH(2)Cl(2). Taxanes except paclitaxel were further removed by extracting with methanol-water-trifluoroacetic acid (1.0:98.9:0.1, v/v/v). Applying HPDC technique to water-insoluble substances is problematic as this method requires a highly aqueous solvent system. In order to overcome this incompatibility, a system was set up where paclitaxel, although in low concentration, was extracted by methanol-water-trifluoroacetic acid (10.0:89.9:0.1, v/v/v). Recycling the extracting solvent to ensure minimal volume, the extracted paclitaxel was adsorbed on a C(18) trap column. A C(18) column of 4.6mm internal diameter was then connected to the trap column. The HPDC technique was thus carried out using an isocratic acetonitrile-water-trifluoroacetic acid (30.0:69.9:0.1, v/v/v) mobile phase consisting of a displacer cetylpyridinium trifluoroacetate (3mg/mL). Paclitaxel was co-eluted with the displacer and spontaneously crystallized. The crystal (114mg) showed 99.4% purity and only 10% of paclitaxel in the starting crude extract was lost during the enrichment/purification processes. This large scale purification method was successfully applied to purify paclitaxel from Chinese yew in small scale, suggesting general applicability of the method. This is the first report of purifying a water-insoluble natural product using HPDC technique.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号