首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 786 毫秒
1.
Kinetics and equilibrium of the acid‐catalyzed disproportionation of cyclic nitroxyl radicals R2NO? to oxoammonium cations R2NO+ and hydroxylamines R2NOH is defined by redox and acid–base properties of these compounds. In a recent work (J. Phys. Org. Chem. 2014, 27, 114‐120), we showed that the kinetic stability of R2NO? in acidic media depends on the basicity of the nitroxyl group. Here, we examined the kinetics of the reverse comproportionation reaction of R2NO+ and R2NOH to R2NO? and found that increasing in –I‐effects of substituents greatly reduces the overall equilibrium constant of the reaction K4. This occurs because of both the increase of acidity constants of hydroxyammonium cations K3H+ and the difference between the reduction potentials of oxoammonium cations ER2NO+/R2NO? and nitroxyl radicals ER2NO?/R2NOH. pH dependences of reduction potentials of nitroxyl radicals to hydroxylamines E1/3Σ and bond dissociation energies D(O–H) for hydroxylamines R2NOH in water were determined. For a wide variety of piperidine‐ and pyrrolidine‐1‐oxyls values of pK3H+ and ER2NO+/R2NO? correlate with each other, as well as with the equilibrium constants K4 and the inductive substituent constants σI. The correlations obtained allow prediction of the acid–base and redox characteristics of redox triads R2NO?–R2NO+–R2NOH. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

2.
The concentration of the Mn(NO3)2 solution has significant influence on the morphologies and the phases of the MnO2 products. A large number of ε- MnO2 nanowires were prepared via a simple pyrolysis under lower reaction concentration. The nanowires have lengths up to tens of micrometers and diameters in the range of 20–100 nm. The β- MnO2 nanobundles and nanoflowers were prepared by increasing the concentration of Mn(NO3)2 solution. The superparamagnetism of ε- MnO2 nanowires and paramagnetism of β- MnO2 nanoflowers indicate their potential applications in magnetic materials.  相似文献   

3.
The adsorption of NOx(x = 1, 2, 3) molecules on single-walled carbon nanotubes (SWCNTs) is investigated using first-principle calculations. Single NO, NO2 and NO3 molecules are found to physisorb on SWCNTs, but molecules can be chemisorbed in pairs on the top of carbon atoms at close sites of SWCNTs. The adsorption energy for pairs of NO or NO3 molecules is larger than for pairs of NO2 molecules. The local curvature is found to have a sizable effect on adsorption energies. The possibility of a surface reaction NO2 + NO2 → NO + NO3 is examined and the relative pathway and barrier is calculated. The results are discussed with reference to available experimental results.  相似文献   

4.
We consider QCD near but above critical temperature Tc. The pressure, susceptibilities and the renormalized Polyakov loop — which is an order parameter for the deconfining phase transition — dramatically change up to temperatures a few times Tc. We refer to this region as a “semi”-QGP, where partial confinement plays important role. We show that the shear viscosity η is suppressed by two powers of the Polyakov loop. This suggests that η/T3 decreases markedly as QCD cools down to temperatures near Tc. We also show a ratio of the viscosity to the entropy becomes small near Tc [Y. Hidaka and R.D. Pisarski, Phase," arXiv:0803.0453 [Phys. Rev. D (to be published)]].  相似文献   

5.
Absorption cross-sections of NO2 between 231–794 nm have been measured in the 221–293 K temperature range, using the global ozone monitoring experiment (GOME) flight-model (FM) satellite spectrometer. The spectra have a resolution of about 0.2 nm below 400 nm and of about 0.3 nm above 400 nm. These are the first reference spectra of NO2 covering at the same time the entire UV–visible–NIR spectral range and a broad range of relevant atmospheric temperatures. The new absorption cross-sections are important as accurate reference data for atmospheric remote-sensing of NO2 and other minor trace gases.  相似文献   

6.
Synthesis and spectral characterization of N,N′-Bis(2,4-dihydroxobenzylidene)1,2-diaminobenzene (DHDA) complexes with chosen f- and d-metal ions are described. Physico-chemical properties of a series of complexes: DHDA–La(NO3)3, DHDA–Eu(NO3)3. DHDA–Yb(NO3)3, DHDA–Cu(NO3)2, DHDA–Zn(NO3)2, DHDA–Co(NO3)2, were studied in methanol solution using UV-VIS, IR and fluorescence spectroscopy. Based on the absorption spectra the conditional stability constants of the metal complexes were determined.  相似文献   

7.
First measurements of line intensities for ν1 and ν3 bands of D232S are reported. About 300 intensities of D232S vibration–rotation lines were obtained from experimental high-resolution spectra recorded in the 1810–2051 cm−1 region with the Fourier Transform Spectrometer built in Reims. Empirical values of transition moment parameters for ν1 and ν3 bands of D232S were determined for the first time using a least-square fit to the observed intensities. Experimental D232S intensities were compared with recent global variational predictions [Vl.G. Tyuterev, L. Régalia-Jarlot, D.W. Schwenke, S.A. Tashkun, Y.G. Borkov, C. R. Phys. 5 (2004) 189–199] computed from isotopically invariant potential and dipole moment functions of the hydrogen sulphide molecule. Average discrepancy between these calculations and our observed data was 0.03 cm−1 for line positions of this spectral range. The discrepancy between these calculations and our measurements for the sum of line intensities was 5.5% and 3.5% for the ν1 and ν3 bands, correspondingly.  相似文献   

8.
An experimental study on the production of NOx as a function of dissipated energy in laser-produced plasma in air is presented. A plasma was produced by focusing a (60–180) mJ, 5 ns, 532 nm pulse from a Q-switched Nd:YAG laser. The results show that for laser energy in the range of 13–99 mJ the laser plasma generates 6.7×1016 NOx molecules per joule and 4.6×1016 NO molecules per joule. An order of magnitude estimate of the NO and NOx production per unit volume of heated gas based on a simple model show that the NOx and NO production efficiency in air are about 3×1022 and 2×1022 molecules J−1 m−3.  相似文献   

9.
A new solid substrate-room temperature phosphorescence (SS-RTP) method for the determination of trace manganese (II) has been established. It bases on the fact that fullerol (R) emits strong and stable room temperature phosphorescence (RTP) on filter paper substrate. H2O2 can oxidize R to cause the SS-RTP quenching. But manganese (II) can obstruct H2O2 to oxidize R, and enhance the RTP of R. α,α′-Bipyridine (Bipy) can sensitize the RTP. After adding Bipy, the ΔI p enhances 7 times than that without Bipy. Under the optimum conditions, the linear dynamic range of this method is 0.016–1.12 pg spot−1 with a detection limit (L.D.) of 4.6 fg spot−1 ( is the absolute mass of Mn2+), and the regression equation of working curve is ΔI p=25.20 + 63.55 (pg spot−1), n=6, r=0.9983. For 0.016 and 1.12 pg spot−1 Mn2+, RSDS are 4.3 and 4.8%, respectively (n=7). This method has been applied to the determination of trace manganese (II) in actual sample with high sensitivity and good selection. And the reaction mechanism of SS-RTP is discussed.  相似文献   

10.
We have simulated the flow in a real cordierite DPF using the lattice Boltzmann method. Inner structure of the filter is analyzed by a 3D X-ray CT technique. Two processes of soot deposition for PM trap and soot combustion for filter regeneration process are considered. Especially, the effect of NO2 on the soot oxidation is examined, which is recently proposed as on-board regeneration system. The reaction rate has been determined based on previous experimental data. The estimated values of Arrhenius factor and activation energy are A = 146 1/s, E = 79.5 kJ/mol with NO2, and A = 1.20 1/s, E = 64.9 kJ/mol without NO2. Results show that, the flow field and pressure change inside the filter are clearly visualized. The pressure distribution depends on the non-uniformity of pore structure. The flow is largely changed with soot deposition, with higher pressure drop across the filter (filter back-pressure). The obtained correlation between total accumulated soot and the filter back-pressure is well in accordance with reported experimental results. In combustion simulation, the effect of NO2 addition to promote the soot oxidation is confirmed. These are useful information to develop the future regenerating DPF system.  相似文献   

11.
An experimental study on the production of NOX in air heated under the action of a concentrated laser beam is presented. In this experiment laser induced plasma was produced in air in a closed Teflon chamber of inner volume 1600 cm3 by focusing a laser beam with either the wavelength of 1064 or 532 nm from a Q-switched Nd:YAG laser. The NOX production was measured by chemiluminescence method and the possible effect of wavelengths, multiple discharges, and pressure on the yield of NOX was studied. The results show that within the studied plasma energy range of 26–253 mJ for 532 nm beam and 16–610 mJ for 1064 nm beam, the NOX production scales linearly with the dissipated plasma energy. For a given energy, 532 nm beam produces more NOX in air at atmospheric pressure than the 1064 nm beam. In an attempt to see the possible influence of multiple discharges on the production of NOX, discharges were created using 2–8 pulses with a repetition rate of 10 pulses per second in stationary air at atmospheric pressure. The results indicate that a certain amount of the NOX created by a given pulse is destroyed by the subsequent pulses. In order to study the pressure dependence of the NOX production, the pressure was varied from 16 to 100 kPa in the chamber and it was found that the NOX production efficiency scales linearly with pressure.  相似文献   

12.
The adsorption of HNO3/H2O mixtures on Ag(110) was investigated to learn more about the chemistry of the metal/electrolyte interface. The experiments were performed in ultrahigh vacuum (UHV) using thermal desorption spectroscopy (TDS), low energy electron diffraction (LEED), and electron stimulated desorption ion angular distribution (ESDIAD) over temperatures of 80–650 K and coverages of 0–10 monolayers (ML). As this is the first known study of HNO3 in UHV, the mass spectrometer cracking pattern for HNO3 is here reported. HNO3 adsorbs irreversibly on the clean surface at 80 K and loses its acidic proton to form an adsorbed surface nitrate (NO3) below 150 K. The saturation amount of adsorbed NO3 is 0.4 ± 0.1 ML for which adsorption occurs in either a normal or split c(2 × 2) structure. N03 is stable on the surface up to 450 K beyond which it decomposes directly to gaseous NO2 and NO and adsorbed atomic oxygen. NO3 decomposition is first order with an activation energy Ea = 151±4 kJ mol−1 and a pre-exponential factor of A = 1015.4±0.4s−1. NO3 stabilizes adsorbed H2O by about 8 kJ mol−1 and is hydrated by as many as three H2O molecules. Multilayers of HNO3/H2O desorb at 150–220 K and show evidence of extensive hydrogen bonding and hydration interactions. No evidence for HNO3-induced corrosion or other surface damage was detected in any of these experiments.  相似文献   

13.
The chemical and thermal structures of flame of composite pseudo-propellants based on cyclic nitramines (HMX, RDX) and azide polymers (GAP and BAMO–AMMO copolymer) were investigated at a pressure of 1.0 MPa by molecular beam mass spectrometry and a microthermocouple technique. Eleven species H2, H2O, HCN, CO, CO2, N2, N2O, CH2O, NO, NO2, and nitramine vapor (RDXv or HMXv), were identified, and their concentration profiles were measured in HMX/GAP and RDX/GAP pseudo-propellant flames at a pressure of 1 MPa. Two main zones of chemical reactions in the flame of nitramine/GAP pseudo-propellants were found. In the first, narrow, zone 0.1 mm wide (adjacent to the burning surface), complete consumption of nitramine vapor and NO2 with the formation of NO, HCN, CO, H2, and N2 occurs. In the second, wider high-temperature zone, oxidation of HCN and CH2O by NO and N2O with the subsequent formation of CO, H2, and N2 takes place. The leading reactions in the high-temperature zone of flame of nitramine/GAP pseudo-propellants are the same as in the case of pure nitramines. In the case of nitramine/BAMO–AMMO pseudo-propellants a presence of carbonaceous particles on the burning surface did not allow us to analyze the zone adjacent to the burning surface, therefore only one flame zone was found. Temperature profiles in the combustion wave of nitramine/azide polymer pseudo-propellants were measured at 1 MPa. The data obtained can be used to develop and validate a self-sustain combustion model for pseudo-propellants based on nitramines and azide polymers.  相似文献   

14.
Nickel oxide and chromium-doped nickel oxide (Ni0.95Cr0.03O1−δ ) were prepared by thermal decomposition of nitrates. The obtained NiO and Ni0.95Cr0.03O1−δ samples were utilized as sensing electrodes (SEs) in yttria-stabilized zirconia (YSZ)-based sensors for detection of NO2 at 800 °C under wet condition (5 vol.% H2O). While the mixed-potential-type planar sensor attached with NiO-SE gave rather large NO2 sensitivity, the sensor attached with Ni0.95Cr0.03O1−δ -SE exhibited fast recovery rate with an acceptable sensitivity. The Δemf (electromotive force) of the sensors varied linearly with NO2 concentration in the examined range of 50–400 ppm on a logarithmic scale. Based on the results of measurements for polarization, complex impedance and gas phase catalysis, the fast recovery was attributable to the high rate for the anodic reaction of O2 at the Ni0.95Cr0.03O1−δ /YSZ interface, and the lower NO2 sensitivity was caused by both the high rate for the anodic reaction of O2 and the high degree for the gas phase conversion of NO2 to NO.  相似文献   

15.
Heavily Fe-substituted Ba2YCu3O6+δ-type compound FeSr2YCu2O6+δ exhibits superconductivity around 60 K, only when it is annealed in N2 and subsequently in O2. Cationic distribution in this compound is strongly dependent on ionic radius at the Y site, and its superconducting properties are affected by the cationic distribution. In contrast, although the compound with the substitution of fluorite-type unit for Y has cationic order, it does not exhibit superconductivity. We have analyzed the crystal structure of the compounds with the substitution of other lanthanoid elements for Y and with substitution of fluorite-type unit for Y.  相似文献   

16.
The temperature dependence of the electrical resistivity of binary R6Mn23, R6Fe23 (R = Y, Dy, Ho, Er, Tm) and pseudobinary R6(Fe1-xMnx)23 (R = Y, Er, Ho) compounds has been determined by a four-probe measuring technique in the temperature range 4 to 400 K.The binary compounds exhibit a prop. T2 dependence at low temperatures, while above 100 K a negative curvature of the -T-curves is observed.These experimental results are discussed on the basis of electron-spin wave scattering in the low temperature range and on the basis of s-d scattering in the high temperature range, taking explicitly into account the temperature dependence of the chemical potential.The pseudobinary compounds generally exhibit a decreasing resitivity with increasing temperature, combined with a high residual resistivity. These facts are explained by the so-called strong scattering mechanism and the appearance of “quasilocalized” states.  相似文献   

17.
The 488 nm laser-induced reaction of NO2 with CO has been investigated and the results computer-modeled. Two reaction mechanisms were considered:1) the direct reaction of vibronically excited NO2 (NO 2 * ) with CO to form CO2, and 2), the reaction of an intermediate NO3 radical formed by the reaction of NO 2 * with NO2 followed by NO3+CONO2+CO2. The modeling results strongly support the former as the dominant mechanism.Federal Junior Fellow (1980–1984)  相似文献   

18.
This review of the role of reaction kinetics in combustion chemistry traces the historical evolution and present state of qualitative and quantitative understanding of a number of reaction systems. Starting from the H2–O2 system, in particular from the reaction between H and O2, mechanisms and key reactions for soot formation, for the appearance of NOx, and for processes of peroxy radicals in hydrocarbon oxidation are illustrated. The struggle for precise rate constants on the experimental and theoretical side is demonstrated for the example of the reaction H + O2 → OH + O. The intrinsic complexity of complex-forming bimolecular reactions, such as observed even in this reaction, also dominates most other key reactions of the systems considered and can be unravelled only with the help of quantum-chemical methods. The multi-channel character of these reactions often also requires the combination with master equation codes. Although kinetics provides an already impressive database for quantitative modelling of simple combustion systems, considerable effort is still required to quantitatively account for the complexities of more complicated fuel oxidation processes.  相似文献   

19.
The structures of 2‐substituted malonamides, YCH(CONR1R2)CONR3R4 (Y = Br, SO2Me, CONH2, COMe, and NO2) were investigated. When Y = Br, R1R2 = R3R4 = HEt; Y = SO2Me, R1–R4 = H and for Y = CONH2 or CONHPh, R1–R4 = Me, the structure in solution is that of the amide tautomer. X‐ray crystallography shows solid‐state amide structures for Y = SO2Me or CONH2, R1–R4 = H. Nitromalonamide displays an enol structure in the solid state with a strong hydrogen bond (OO distance = 2.3730 Å at 100 K) and d(OH) ≠ d(OH). An apparently symmetric enol was observed in solution, even in appreciable percentages in highly polar solvents such as DMSO‐d6, but Kenol values decrease on increasing the solvent polarity. The N,N′‐dimethyl derivative is less enolic. Acetylmalonamides display a mixture of enol on the acetyl group and amide in non‐polar solvents, and only the amide in DMSO‐d6. DFT calculations gave the following order of pKenol values for Y: H > CONH2 > COMe ≥ COMe (on acetyl) ≥ MeSO2 > CN > NO2 in the gas phase, CHCl3, and DMSO. The enol on the C?O group is preferred to the aci‐nitro compound, and the N? O? HO?C is less favored than the C?O? HO?C hydrogen bond. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

20.
Single grain YBa2Cu3O7−x (Y123) bulk superconductors with Y2BaCuO5 (Y211) and various amounts of BaCeO3 (5–45 wt.% by an increment of 10 wt.%) were fabricated by a seeded infiltration process. The addition of BaCeO3 was found to be effective for a modification of the microstructure and an improvement of the superconducting properties. The refinement effect for Y211 particles within an entire superconducting YBa2Cu3O7−x (Y123) matrix was achieved by BaCeO3 additions. The critical current density (Jc) values were increased as the BaCeO3 contents were increased (maximum Jc at 35 wt.% BaCeO3 addition). The Jc improvement by BaCeO3 additions might be due to the microstructure modifications associated with the finely distributed Y211 and BaCeO3 particles. With the addition of BaCeO3 the onset Tc values decreased slightly, indicating highly limited Ce substitution for Y site. It can be concluded that the BaCeO3 addition has a beneficial effect on the morphology, the size and the distribution of the Y211 inclusions and the microstructure regarding pinning improvement.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号