首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Hui-Ping Yi 《Tetrahedron》2005,61(33):7974-7980
The self-assembly of a novel series of intramolecular hydrogen bonding-driven foldamers have been described. Five linear aromatic amide oligomers 1-5, which bear two to six repeating benzoyl amide subunits, respectively, have been prepared by continuous amide-coupling reactions. The existence of three-centered hydrogen bonds in the oligomers and consequently, the folding conformation of the oligomers in the solid state and solution have been proved by the X-ray analysis (for 2) and the 1H NMR and IR experiments. Molecular modeling reveals a planar and rigid conformation for the oligomers and a cavity of 0.86 nm in diameter for 6-mer 5. Fluorescent and 1H NMR experiments have demonstrated that the new aromatic oligo-amide foldamers can bind primary and secondary alkyl ammonium ions in chloroform and the associated binding constants have been determined. It is revealed that 5-mer 4 exhibits the largest binding ability. A face-to-face binding mode has been proposed for the complexes.  相似文献   

2.
Oligo(m-phenylene ethynylenes) (oligo(m-PE)) with backbones rigidified by intramolecular hydrogen bonds were found to fold into well-defined conformations. The localized intramolecular hydrogen bond involves a donor and an acceptor from two adjacent benzene rings, respectively, which enforces globally folded conformations on these oligomers. Oligomers with two to seven residues have been synthesized and characterized. The persistence of the intramolecular hydrogen bonds and the corresponding curved conformations were established by ab initio and molecular mechanics calculations, 1D and 2D (1)H NMR spectroscopy, and UV spectroscopy. Pentamer 5, hexamer 6, and heptamer 7 adopt well-defined helical conformations. Such a backbone-based conformational programming should lead to molecules whose conformations are resilient toward structural variation of the side groups. These m-PE oligomers have provided a new approach for achieving folded unnatural oligomers under conditions that are otherwise unfavorable for previously described, solvent-driven folding of m-PE foldamers. Stably folded structures based on the design principle described here can be developed and may find important applications.  相似文献   

3.
Li C  Wang GT  Yi HP  Jiang XK  Li ZT  Wang RX 《Organic letters》2007,9(9):1797-1800
[reaction: see text] Three chiral aromatic hydrazide foldamers have been designed and synthesized, in which two R- or S-proline units were incorporated at the terminals of their backbones. The 1H NMR, circular dichroism (CD), and fluorescent experiments and molecular dynamics simulations revealed that the foldamers adopted a chiral helical conformation and complexed alkylated glucoses in chloroform with a good diastereomeric selectivity.  相似文献   

4.
Donor-acceptor interaction between electron-rich 1,5-dioxynaphthalene (DAN) and electron-deficient pyromellitic diimide (PDI) has been utilized to induce the formation of a new kind of zipper-featured delta-peptide foldamers. Seven l-ornithine-based delta-peptides 1a-g, in which one to three DNA and PDI units are incorporated to the two ends of the peptide backbones, respectively, have been designed and prepared by the standard liquid-phase synthetic method. (1)H NMR, UV-vis, and fluorescent quenching studies reveal that all the delta-peptides adopt folding conformations in nonpolar chloroform and polar DMF as a result of intramolecular donor-acceptor interaction between the DAN and PDI units. The folding states become more compact for the peptide skeletons possessing more donor-acceptor interacting sites. Variable-temperature UV-vis experiments indicate that, although the folding is a dynamic process, the folding state can remain even at 150 degrees C in DMF. Circular dichroism (CD) investigations reveal that the new generation of delta-peptides have similar folding patterns. A zipper-featured folding motif has been proposed for the new generation of delta-peptide foldamers. Molecular modeling has generated two most stable folding states for the longest delta-peptide 1g, with an energy difference of 26.80 kcal/mol.  相似文献   

5.
In this work, we have elucidated in detail the folding properties of two perylene bisimide (PBI) foldamers composed of two and three PBI units, respectively, attached to a phenylene ethynylene backbone. The folding behaviors of these new PBI folda‐dimer and trimer have been studied by solvent‐dependent UV/Vis absorption and 1D and 2D NMR spectroscopy, revealing facile folding of both systems in tetrahydrofuran (THF). In CHCl3 the dimer exists in extended (unfolded) conformation, whereas partially folded conformations are observed in the trimer. Temperature‐dependent 1H NMR spectroscopic studies in [D8]THF revealed intramolecular dynamic processes for both PBI foldamers due to, on the one hand, hindered rotation around C?N imide bonds and, on the other hand, backbone flapping; the latter process being energetically more demanding as it was observed only at elevated temperature. The structural features of folded conformations of the dimer and trimer have been elucidated by different 2D‐NMR spectroscopy (e.g., ROESY and DOSY) in [D8]THF. The energetics of folding processes for the PBI dimer and trimer have been assessed by calculations applying various methods, particularly the semiempirical PM6‐DH2 and the more sophisticated B97D approach, in which relevant dispersion corrections are included. These calculations corroborate the results of NMR spectroscopic studies. Folding features in the excited states of these PBI foldamers have been characterized by using time‐resolved fluorescence and transient absorption spectroscopy in THF and CHCl3, exhibiting similar solvent‐dependent behavior as observed for the ground state. Interestingly, photoinduced electron transfer (PET) process from electron‐donating backbone to electron‐deficient PBI core for extended, but not for folded, conformations was observed, which can be explained by a fast relaxation of excited PBI stacks in the folded conformation into fluorescent excimer states.  相似文献   

6.
Oligo(ethylene glycols) 1a-h, which are incorporated with one to eight 2,3-naphthylene units, respectively, have been synthesized and characterized. The conformational changes of the new oligomers have been investigated in chloroform-acetonitrile binary solvents by the UV-vis, (1)H NMR, and fluorescent spectroscopy. It has been revealed that the naphthalene units in hexamer 1f, heptamer 1g, and octamer 1h are driven by solvophobic interaction to stack in polar solvents. As a result, compact helical conformations are formed that give rise to a cavity similar to that of 18-crown-6. Shorter oligomers 1b-e exhibit weaker folding tendency. (1)H NMR studies reveal that 1f-h are able to complex ammonium or ethane-1,2-diaminium 19, but not secondary ammonium compounds. The association constants of complexes 1f.19, 1g.19, and 1h.19 in acetonitrile are determined to be 3.5(+/-0.4) x 10(3), 1.0(+/-0.12) x 10(4), and 2.5(+/-0.4) x 10(4) M(-1), respectively, with the (1)H NMR titration method. For comparison, hexamer 22, which incorporates six 1,5-naphthylene units, is also prepared. The UV-vis and fluorescent investigations show that 22 is also able to fold in polar solvents, but no helical structure can be produced due to mismatch of the stacking naphthalene units and consequently there is no obvious complexation between 22 with ethane-1,2-diaminium ion. The structures of the longest foldamer 1h and its complex with 19 have been studied with molecular mechanics calculations. This work represents a new approach to building folding conformations from flexible linear molecules.  相似文献   

7.
黎占亭 《化学进展》2011,23(1):1-12
根据芳环上酰胺和氢键受体位置的不同,氢键介质的芳酰胺和酰肼折叠体可以产生折叠、螺旋、"之"字型、直线型及其他扩展型的构象.由于氢键具有较高的稳定性及芳酰胺固有的平面性特征,这一系列的芳酰胺寡聚体拥有较高的可预测的构象.芳酰胺骨架本身可以通过简单的酰胺键偶合反应构筑,而不同的官能团也可以选择性地引入到特定的骨架内部或其侧...  相似文献   

8.
The preparation of cavitands composed of 4, 5, 6, and 7 aromatic subunits ([n]cavitands, n=4-7) is described. The simple, two-step synthetic procedure utilized readily available starting materials (2-methylresorcinol and diethoxymethane). The two cavitand products having 4 and 5 aromatic subunits exhibited highly symmetric cone conformations, while the larger cavitands (n = 6 and 7) adopt conformations of lower symmetry. 1H NMR spectroscopic studies of [6]cavitand and [7]cavitand revealed that these hosts undergo exchange between equivalent conformations at room temperature. The departure of these two cavitands from cone conformations is related to steric crowding on their Ar-O-CH2-OAr bridges and is predicted by simple molecular mechanics calculations (MM2 force field). X-ray diffraction studies on single crystals of the [4]cavitand, [5]cavitand, and [6]cavitand hosts afforded additional experimental support for these conclusions.  相似文献   

9.
A new C-linked carbo-β-amino acid, (R)-β-Caa((r)), having a carbohydrate side chain with d-ribo configuration, was prepared from d-glucose by inverting the C-3 stereocenter to introduce constraints/interactions. From the NMR studies it was inferred that the new monomer may participate in additional electrostatic interactions, facilitating and enhancing novel folds in oligomeric peptides derived from it. The α/β-peptides, synthesized from alternating l-Ala and (R)-β-Caa((r)), have shown the presence of 14/15-helix by NMR (in CDCl(3), methanol-d(3) and CD(3)CN), CD and MD calculations. The hybrid peptides showed the presence of electrostatic interactions involving the intraresidue amide proton and the C3-OMe, which helped in the stabilization of the NH(i)···CO(i-4) H-bonds and adoption of 14/15-helix. The importance of such additional interactions has been well defined in recent times to stabilize the folding in a variety of peptidic foldamers. These observations suggest and emphasize that the side chain-backbone interactions are crucial in the stabilization of the desired folding propensity. The designed monomer thus enlarges the opportunities for the synthesis of peptides with novel conformations and expands the repertoire of the foldamers.  相似文献   

10.
Complete analysis of the (1)H NMR spectrum of huperzine A, 1-amino-13-ethylidene-11-methyl-6-aza-tricyclo[7.3.1.0(2, 7)]trideca-2(7),3,10-trien-5-one, a Lycopodium alkaloid and anti-Alzheimer drug lead containing an ABCD(E)(MN)(OP)X(3)Y(3)-type system of 15 nonexchangeable proton spins, is reported for the first time, and earlier assignments are corrected. The complete (1)H parameter set of 11 chemical shifts clarifies the diastereotopism of both methylene groups, and provides a total of 38 observed H,H-couplings including 31 long-range ((4-6)J) connectivities. The NMR data is consistent with the comparatively rigid alicyclic backbone predicted by molecular mechanics calculations, and forms the basis for (1)H NMR fingerprint analysis for the purpose of dereplication, purity analysis, and elucidation of structural analogs.  相似文献   

11.
A barium-containing crown ether bridged chiral heterotrinuclear salen Zn(II) complex BaZn2L(ClO4)2, where L is a folded dinuclear chiral (R,R)-salen ligand, has been synthesized and characterized by elemental analysis, 1H NMR, UV-vis, IR, circular dichroism (CD) spectra, and mass spectra. As a folded dinuclear chiral host, its recognition with achiral guests (imidazole derivatives), rigid bidentate guest (1,4-diazobicyclo[2,2,2]octane, DABCO) and chiral guests (amino acid methyl esters) was investigated by means of UV-vis spectrophotometric titration, CD spectra. The association constants of D-amino acid methyl esters are found to be higher than those of their L-enantiomer. The sandwich-type binding of BaZn2L(ClO4)2-DABCO supramolecular assembly was specially studied via 1H NMR titration and 1H ROESY. To understand the recognition on molecular level, density functional theory (DFT) calculations on B3LYP/LanL2DZ were performed on the minimal energy conformations of host, guests, and host-guest complexes. The minimal energy conformations were obtained by molecular mechanics (MM) optimization and molecular dynamics (MD) simulation. The results of single point energy, HOMO energy, and charges transfer were analyzed. The results of theoretical calculations are in good agreement with the experimental data.  相似文献   

12.
We have investigated the Z/E isomerism of the hydrazide link (CO-NH-N) and amidoxy link (CO-NH-O). The study was first focused on small molecular models using NMR and X-ray diffraction. It allowed determination of simple NMR criterions to differentiate easily the Z and E forms, which were then applied to investigate the behavior of these links inside the corresponding oligomers. Our results concerning the hydrazide link corroborate pioneering work that had been done in the 1970s except in the case were it is located inside aza-β(3)-cyclopeptides, where the old empirical rules failed to predict the right geometry of the link. The geometrical preference of the amidoxy bond is also unambiguously established and differs clearly from recent theoretical calculations. Our findings help rationalize the close self-organization ability of aza-β(3)-peptides and α-aminoxypeptides, two recently described foldamers.  相似文献   

13.
We have developed a synthesis and examined the conformational behavior and recognition properties of dynamic molecular containers 1-3. As follows from the 1H NMR dilution, diffusion NMR, and vapor pressure osmometry measurements, compound 1 has a low affinity for intermolecular aggregation and is mostly present in monomeric form in dilute chloroform solutions. Inspecting the O-H chemical shift resonances of 1, 3, and model compound 4 as a function of temperature afforded the deltadelta/deltaT coefficients of 17.0, 17.3, and 4.7 ppb K(-1), respectively. In combination with the results from variable temperature 1H NMR and IR measurements, the existence of conformers of 1 and 3 in equilibrium, each having a different extent of hydrogen bonding, was confirmed. Molecular mechanics calculations suggested 1a as the most favorable conformation, with three additional conformers, 1b, 1c, and 1d, populating local energy minima. Further optimization of each of the four conformers using semiempirical PM3 and ab initio (HF/6-31G) methods allowed a determination of their relative free energies and the corresponding Boltzmann population distributions which were heavily weighted toward 1a. A computed composite IR spectrum of a fraction-weighted mixture of the conformers of 1 reproduced the experimentally observed IR spectrum in its structural features, leading to a conclusion that conformer 1a indeed dominates the equilibrium. The egg-shaped cavity of 1 (136.6 angstroms3) is complementary in size, shape, and electrostatic potential to chloroform (74.9 angstroms3). A single-crystal X-ray study of 2 revealed a disordered chloroform molecule positioned inside the cavitand along its C3 axis.  相似文献   

14.
Three new derivatives of thiosemicarbazides, derived from the reactions of ethyl-, allyl- and phenyl isothiocyanates with Girard's T [(carboxymethyl) trimethylammonium chloride hydrazide] and P [1-(carboxymethyl) pyridinium chloride hydrazide], have been isolated and characterized by chemical analyses, conductivities, spectral (IR, 1H NMR) and molecular weight measurements. The most important assignments of the functional groups in the isolated solid organic compounds have been determined using IR spectra. Also, the main functional groups in the skeleton of these compounds have been characterized using 1H NMR spectra. Moreover, a comparative studies between the three thiosemicarbazide derivatives have been carried out. The role of the existence of ethyl-, allyl-, phenyl-, [(CH3)3N+-] and [C5H5N+-] on the position of the functional groups has been investigated. Finally, the absence of any type of hydrogen bonding (inter- and/or intra-) within these compounds is discussed on the basis of the data of melting points, IR and 1H NMR spectra and molecular weight measurements.  相似文献   

15.
The synthesis and X-ray crystal structures of triptycene-derived secondary dicarboxamides 1 and 4-7 and reference compounds 2, 3, and 8 are reported. For comparison, molecular conformations of 1-8 in the gas phase and those of 1 and 3-6 in CD2Cl2 investigated by AM1 modeling and 1H NMR spectroscopy, respectively, are also included. The solid-state conformations of 1 and 5-8 are folded and compact, resulting from the cooperative effects of intramolecular amide-amide hydrogen bonding and edge-to-face arene-arene interactions between the triptycene and the N-acetylsulfanilyl groups. The sulfonyl ester groups are also essential in the folding of 1 and 5-8 and function as structural turn units. In contrast, the conformations of 2-4 are unfolded due to the lack of one of these three essentials. The extended triptycene ring systems in 6 and 7 provide an arene-arene contact mode that is different from that for 1 and 5. While AM1 calculations suggest that the two possible arene-arene contact modes in 6 and 7 have similar conformational energies, the one observed in the solid state is also favored in solutions. To achieve a more regular shape for compact crystal packing, the bulky triptycene groups tend to pack in pairs. As a result, the intermolecular amide-amide hydrogen bonding is perturbed and modified with the participation of either the sulfonyl groups or the methanol solvent molecules, leading to various hydrogen-bonding motifs for these triptycene diamides.  相似文献   

16.
A series of indolocarbazole-based foldamers have been prepared which can fold into a helical array with an internal cavity encircled by multiple indole NHs, thus allowing for binding anions by hydrogen bonds. The helical folding has been confirmed by computer modeling, 1H NMR spectroscopy, 2D ROESY experiments, and binding studies. A water-soluble derivative binds small, hydrophilic anions in the order Cl- > F- > Br- but negligibly with large, diffuse anions such as I- and ClO4-. Interestingly, the relative binding affinities of the fluoride and chloride ions in water are opposite to each other in an organic medium 4:1 (v/v) DMSO/MeOH, possibly due to the difference in the competing solvation energy.  相似文献   

17.
The synthesis and metal complexation of chiral depsipeptide dendrimers 3 and 7 containing an ethylenediaminetetraacetic acid (EDTA) ester-derived core is reported. The EDTA ester cavity of these dendrimers selectively complexes Zn(2+) and Cu(2+) ions leading to diastereoselective folding. To elucidate the coordination motif in the resulting "foldamers" of 3-ZnCl(2), 7-ZnCl(2), 3-CuCl(2), and 7-CuCl(2), the coordination behavior of the tetramethyl ester of EDTA (8) has been investigated as a model case. The corresponding complexes 8-ZnCl(2) and 8-CuCl(2) have been structurally characterized by (1)H NMR spectroscopy and X-ray analysis. The complexes involve the inherently chiral octahedral cis-alpha coordination motif, in which 8 serves as a tetradentate ligand. In the case of the Zn(II) complex 8-ZnCl(2), both Deltacis-alpha(S,S,lambda) and Lambdacis-alpha(R,R,lambda) stereoisomers were found in the unit cell. For the Cu(II) complex 8-CuCl(2), only one stereoisomer, namely Deltacis-alpha(S,S,lambda) was found in the crystal under investigation. (1)H NMR spectroscopy has shown that the same coordination motif is diastereoselectively formed in the chiral Zn(2+) dendrimers 3-ZnCl(2) and 7-ZnCl(2). Likewise, the calculated CD spectrum of the Deltacis-alpha(S,S,lambda) stereoisomer of the model complex 8-CuCl(2) shows good agreement with the experimental spectrum of the Cu(II) dendrimers 3-CuCl(2) and 7-CuCl(2), allowing assignment of the absolute configurations of the preferred foldamers as Lambdacis-alpha(R,R,lambda) for 3-CuCl(2) and Deltacis-alpha(S,S,lambda) for 7-CuCl(2). This work represents the first example of metal-complexation-mediated diastereoselective folding of chiral dendrimers with known absolute configuration.  相似文献   

18.
Noncovalent interactions, especially hydrogen-bonding interactions as well as electrostatic forces, confined within one macromolecule are the key to designing foldamers that adopt well-defined conformations in solution. In the context of significant recent activities in the area of triazole-connected foldamers, so-called clickamers, we present a fundamental study that compares various model compounds that bear adjacent N-, O-, or F-heteroatom substituents. The interplay of attractive and repulsive interactions leads to rotational constraints around the single bonds attached to both the 1- and 4-positions of the 1,2,3-triazole moiety and should therefore be able to induce well-defined conformational preferences in higher oligomers and polymers, that is, foldamers. Various compounds were synthesized and characterized with regard to their preferred conformations in all three aggregation states--that is, in the gas phase, in solution as well as in the solid state--by employing DFT calculations, NMR spectroscopic experiments, and X-ray crystallography, respectively. On the basis of the thus-obtained general understanding of the conformational behavior of the individual connection motifs, heterostructures were prepared from different motifs without affecting their distinct folding characteristics. Therefore, this work provides a kind of foldamer construction kit, which should enable the design of various clickamers with specific shape and incorporated functionality.  相似文献   

19.
This paper describes the self-assembly of a new class of foldamer-based molecular tweezers, whose rigid folded conformations are stabilized by intramolecular hydrogen bonding. Two zinc porphyrin units are introduced to the ends of molecular tweezers Zn(2)1 and Zn(2)2, while three zinc porphyrin units are incorporated to the S-shaped bi-tweezers Zn(3)3, which may be regarded as a combination of two Zn(2)1 molecules. Due to the preorganized U-shaped feature, Zn(2)1 and Zn(2)2 are able to strongly complex C60, C70, and C60 derivative 25 in chloroform or toluene in a 1:1 binding stoichiometry, whereas Zn(3)3, which possesses two tweezer units, complexes the guests in a 1:2 stoichiometry. More stable complex Zn(3)3.24 is formed between Zn(3)3 and 24, a linear molecule bearing two C60 moieties at the ends, as a result of the cooperative interaction of two binding sites. Chiral induction is observed for all the three receptors upon complexation with C60-incoporated chiral phenylalanine derivative 29, although the complexation of 29 by the folding receptors is pronouncedly weaker than that of C60 and 25 due to increased steric hindrance. The driving force for the formation of the complexes is the well established pi-pi stacking between the zinc porphyrin and fullerene units. The 1H and 13C NMR, UV-vis, fluorescent, and circular dichroism spectroscopy have been used to investigate the complexing behavior of the folding receptors and the fullerene guests. The association constants of the corresponding complexes in toluene and chloroform (if possible) have been evaluated with the UV-vis and fluorescent titration experiments.  相似文献   

20.
Indolizidine (?)-235B′ is a particularly interesting natural product, as it is the currently known, most potent and subtype-selective open-channel blocker of the α4β2 nicotinic acetylcholine receptor (nAChR). In the current study, extensive first-principles electronic structure calculations have been carried out in order to determine the stable molecular conformations and their relative free energies of the protonated and deprotonated states of (?)-235B′ in the gas phase, in chloroform, and in aqueous solution. The 1H and 13C NMR chemical shifts calculated using the computationally determined dominant molecular conformation of the deprotonated state are all consistent with available experimental NMR spectra of (?)-235B′ in chloroform, which suggests that the computationally determined molecular conformations are reasonable. Our computational results reveal for the first time that two geminal H atoms on carbon-3 (C3) of (?)-235B′ have remarkably different chemical shifts (i.e., 3.24 and 2.03 ppm). The computational results help one to better understand and analyze the experimental 1H NMR spectra of (?)-235B′. The finding of remarkably different chemical shifts of two C3 geminal H atoms in a certain molecular conformation of (?)-235B′ may also be valuable in analysis of NMR spectra of other related ring-containing compounds. In addition, the pK a of (?)-235B′ in aqueous solution is predicted to be ~9.7. All of the computational results provide a solid basis for future studies of the microscopic and phenomenological binding of various receptor proteins with the protonated and deprotonated structures of this unique open-channel blocker of α4β2 nAChRs. This computational study also demonstrates how one can appropriately use computational modeling and spectroscopic analysis to address the structural and spectroscopic problems that cannot be addressed by experiments alone.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号