首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
A stochastic approach based on the Master equation is proposed to describe the process of formation and growth of car clusters in traffic flow in analogy to usual aggregation phenomena such as the formation of liquid droplets in supersaturated vapour. By this method a coexistence of many clusters on a one-lane circular road has been investigated. Analytical equations have been derived for calculation of the stationary cluster distribution and related physical quantities of an infinitely large system of interacting cars. If the probability per time (or p) to decelerate a car without an obvious reason tends to zero in an infinitely large system, our multi-cluster model behaves essentially in the same way as a one-cluster model studied before. In particular, there are three different regimes of traffic flow (free jet of cars, coexisting phase of jams and isolated cars, highly viscous heavy traffic) and two phase transitions between them. At finite values of p the behaviour is qualitatively different, i.e., there is no sharp phase transition between the free jet of cars and the coexisting phase. Nevertheless, a jump-like phase transition between the coexisting phase and the highly viscous heavy traffic takes place both at and at a finite p. Monte-Carlo simulations have been performed for finite roads showing a time evolution of the system into the stationary state. In distinction to the one-cluster model, a remarkable increasing of the average flux has been detected at certain densities of cars due to finite-size effects. Received 17 September 1999  相似文献   

2.
3.
Ding-wei Huang 《Physica A》2009,388(1):63-70
We study traffic dynamics in a simple system with three open boundaries. Traffic patterns in steady states are mainly controlled by boundary conditions. There are three distinct phases in the entire parameter space. We construct a phase diagram and develop a mean-field theory to derive the phase regimes. The influences of speed limit are also discussed. We identify three kinds of on-ramp bottleneck: localized bottleneck in free flow, severe bottleneck in congestion, and extended bottleneck in rush hours. The first two are steady and the third is dynamical. The on-ramp bottleneck can be enhanced significantly by the dynamical effects of rush hours.  相似文献   

4.
In this paper, phase transitions are investigated in speed gradient model with an on-ramp. Phase diagrams of traffic flow composed of manually driven vehicles and adaptive cruise control (ACC) vehicles are studied, respectively. The traffic flow composed of ACC vehicles is modeled by enhancing propagation speed of small disturbance. The phase diagram of traffic flow composed of manually driven vehicles is similar to that in previous works, in which such states as pinned localized cluster (PLC), moving localized cluster (MLC), triggered stop-and-go traffic (TSG), oscillatory congested traffic (OCT), and homogeneous congested traffic (HCT) are reproduced. In the phase diagram of traffic flow composed of ACC vehicles, traffic stability is enhanced and such states as PLC, MLC, and TSG disappear. Furthermore, some interesting phenomena, such as stationary OCT upstream of on-ramp and appearance of second OCT in HCT, are identified.  相似文献   

5.
Xiao-Qiu Shi  Hong Li  Rui Zhong 《Physica A》2007,385(2):659-666
Two-dimensional cellular automaton model has been broadly researched for traffic flow, as it reveals the main characteristics of the traffic networks in cities. Based on the BML models, a first-order phase transition occurs between the low-density moving phase in which all cars move at maximal speed and the high-density jammed phase in which all cars are stopped. However, it is not a physical result of a realistic system. We propose a new traffic rule in a two-dimensional traffic flow model containing road sections, which reflects that a car cannot enter into a road crossing if the road section in front of the crossing is occupied by another car. The simulation results reveal a second-order phase transition that separates the free flow phase from the jammed phase. In this way the system will not be entirely jammed (“don’t block the box” as in New York City).  相似文献   

6.
Thermodynamic equilibrium states are given by the minimum of a convex free energy function with suitable boundary conditions. Nonconvexity may lead to the coexistence of several phases and the classical Gibbs phase rule allows constructing their equilibrium properties (e.g., density or pressure). Within the framework of nonequilibrium thermodynamics, the maximization of energy dissipation (under suitable boundary conditions) can be used as an extremal principle to find stationary states. We show that stationary states generally exist for convex energy dissipation functions and that nonconvexity leads to metastable and unstable states. A geometric argument, similar in spirit to Gibbs' double-tangent construction, yields the stability limits of stationary states. This argument is applied to study a classical problem of materials science, namely the motion of a grain boundary under the influence of solute drag.  相似文献   

7.
When a macroscopic system in contact with a heat reservoir is driven away from equilibrium, the second law of thermodynamics places a strict bound on the amount of work performed on the system. With a microscopic system the situation is more subtle, as thermal fluctuations give rise to a statistical distribution of work values. In recent years it has been realized that such distributions encode surprisingly more information than one might expect from traditional thermodynamic arguments. I will discuss a number of exact results that relate equilibrium properties of the system, in particular free energy differences, to the fluctuations in the work performed during such a nonequilibrium process. I will describe the theoretical foundations of these relations, connections with irreversibility and the second law of thermodynamics, and potential experimental and computational applications.  相似文献   

8.
For macroscopic systems, the second law of thermodynamics establishes an inequality between the amount of work performed on a system in contact with a thermal reservoir, and the change in its free energy. For microscopic systems, this result must be considered statistically, as fluctuations around average behavior become substantial. In recent years it has become recognized that these fluctuations satisfy a number of strong and unexpected relations, which remain valid even when the system is driven far from equilibrium. We discuss these relations, and consider what they reveal about the second law of thermodynamics and the nature of irreversibility at the microscale.  相似文献   

9.
In this paper, we have investigated the effects of adaptive cruise control (ACC) vehicles in a mixture with manually-controlled (manual) vehicles. The manual vehicles are simulated by using the modified comfortable driving model, which can describe synchronized traffic flow. The phase transition probabilities from free flow to synchronized flow and from synchronized flow to jams are studied. The impact of ACC vehicles on the flow rates in free flow and synchronized flow and on the propagation velocity of the downstream front of jams are investigated. The dependence of microscopic properties of traffic flow, including the spatiotemporal patterns and the velocity distribution, is explored. Our results are expected to be useful for developing ACC systems.  相似文献   

10.
The effect of real-time information on the traffic flows of the crossing roads is studied by simulations based on a cellular automaton model. At the intersection, drivers have to enter a road of a shorter trip-time, by making a turn if necessary, as indicated on the information board. Dynamics of the traffic are expressed as a return map in the density-flow space. The traffic flow is classified into six phases, as a function of the car density. It is found that such a behavior of drivers induces too much concentration of cars on one road and, as a result, causes oscillation of the flow and the density of cars on both roads. The oscillation usually results in a reduced total flow, except for the cases of high car density.  相似文献   

11.
We propose another possible mechanism of synchronized flow, i,e. that a time headway dependent randomization can exhibit synchronized flow. Based on this assumption, we present a new cellular automaton (CA) model for traffic flow, in which randomization effect is enhanced with the decrease of time headway. We study fundamental diagram and spatial-temporal diagrams of the model and perform microscopic analysis of time series data, which shows the model could reproduce synchronized flow as expected. It is also shown that a spontaneous transition from synchronized flow to jam could be observed by incorporating slow-to-start effect into the model. We expect that our work could contribute to the understanding of the real origin of synchronized flow.  相似文献   

12.
H.J. Sun  J.J. Wu  Z.Y. Gao 《Physica A》2008,387(7):1648-1654
Considering the microscopic characteristics (vehicle speed, road length etc.) of links and macroscopic behaviors of traffic systems, we derive the critical flow generation rate in scale-free networks. And the dynamics of traffic congestion is studied numerically in this paper. It is shown that the queue length increases with microscopic characteristics of links. Additionally, the critical flow generation rate decreases with increase of the network size N, maximum speed vmax and parameter τ. The significance of this finding is that, in order to improve the traffic environment, both the local information for the single link and behaviors of the whole network must be analyzed simultaneously in a traffic system design.  相似文献   

13.
We review the literature on the energetics of Brownian motors, distinguishing between forced ratchets, chemical motors – driven out of equilibrium by differences of chemical potential, and thermal motors – driven by temperature differences. The discussion is focused on the definition of efficiency and the compatibility between the models and the laws of thermodynamics. Received: 13 November 2001 / Accepted: 10 January 2002 / Published online: 22 April 2002  相似文献   

14.
Xin-Gang Li  Bin Jia 《Physica A》2009,388(10):2051-2060
Based on the Nagel-Schreckenberg model, we study the impact of deceleration in advance on the dynamics of traffic flow. In the process of deceleration in advance, the effect of reaction delay and the effect of expectation are considered respectively. The traffic flow properties are studied by analyzing the fundamental diagram, spatio-temporal patterns, distance headway distribution and car accidents. The simulation results show that reaction delay brings complex traffic flow patterns and expectation makes the serious car accidents rarely happen.  相似文献   

15.
胡隐樵 《物理学报》2003,52(6):1379-1384
一个系统的发展总是由不可逆热力过程和非线性动力过程所驱动.将大气动力学方程组同考虑了动能变化的Gibbs关系结合起来构建的熵平衡方程,才能更好地描述大气系统的不可逆热力过程和非线性动力过程.至今非平衡态热力学仅利用Onsager线性唯象关系证明了最小熵产生原理.利用新建立的熵平衡方程和大气动力学方程的性质证明,最小熵产生原理在热力学线性区和非线性区都是普遍成立的.且当热量输送平衡、水汽输送平衡和动量输送平衡时,系统达到不可逆过程最弱的最小熵产生热力学状态.当系统又是动力平衡且无平流时,这种最小熵产生态就是 关键词: 非线性热力学 熵产生 最小熵产生原理 有序结构  相似文献   

16.
A central endeavor of thermodynamics is the measurement of free energy changes. Regrettably, although we can measure the free energy of a system in thermodynamic equilibrium, typically all we can say about the free energy of a nonequilibrium ensemble is that it is larger than that of the same system at equilibrium. Herein, we derive a formally exact expression for the probability distribution of a driven system, which involves path ensemble averages of the work over trajectories of the time-reversed system. From this we find a simple near-equilibrium approximation for the free energy in terms of an excess mean time-reversed work, which can be experimentally measured on real systems. With analysis and computer simulation, we demonstrate the accuracy of our approximations for several simple models.  相似文献   

17.
We consider three examples of dissipative dynamical systems involving many degrees of freedom, driven far from equilibrium by a constant or time dependent forcing. We study the statistical properties of the injected and dissipated power as well as the fluctuations of the total energy of these systems. The three systems under consideration are: a shell model of turbulence, a gas of hard spheres colliding inelastically and excited by a vibrating piston, and a Burridge-Knopoff spring-block model. Although they involve different types of forcing and dissipation, we show that the statistics of the injected power obey the “fluctuation theorem" demonstrated in the case of time reversible dissipative systems maintained at constant total energy, or in the case of some stochastic processes. Although this may be only a consequence of the theory of large deviations, this allows a possible definition of “temperature" for a dissipative system out of equilibrium. We consider how this “temperature" scales with the energy and the number of degrees of freedom in the different systems under consideration. Received 26 June 2000 and Received in final form 24 October 2000  相似文献   

18.
A study of a phase separation process in stochastic systems with a field dependent kinetic coefficient and an internal multiplicative noise is presented. Dynamics of spinodal decomposition at early and late stages is investigated by computer simulations where the domain growth law is generalized. A mean field approach was carried out in order to obtain the stationary probability, bifurcation and phase diagrams displaying reentrant phase transitions. We relate our approach to entropy driven phase transitions theory.  相似文献   

19.
The synchronized flow traffic phase of Kerner’s three-phase traffic theory can be well reproduced by the model proposed by Jiang and Wu [R. Jiang, Q.S. Wu, J. Phys. A: Math. Gen. 36 (2003) 381]. But in the Jiang and Wu model, the rule for brake light-after switching on, the brake light will not set off until the vehicle accelerates-is obviously unrealistic. Thus we improved the model by considering the difference in accelerating and decelerating performance under different driving conditions. The fundamental diagram and spatial-temporal diagrams are analyzed. We confirmed that the new model could reproduce the synchronized flow by two methods, i.e. the traffic flow interruption effect and performing microscopic analysis of time series data. Simulation results show that the decelerating difference is an important factor to reproduce the synchronized flow. We expect that our work could make contributions to understanding the mechanism of the synchronized flow.  相似文献   

20.
A differential cluster variation method (DCVM) is proposed for analysis of spinoidal decomposition in alloys. In this method, lattice symmetry operations in the presence of an infinitesimal composition gradient are utilized to deduce the connection equations for the correlation functions and to reduce the number of independent variables in the cluster variation analysis. Application of the method is made to calculate the gradient energy coefficient in the Cahn-Hilliard free energy function and the fastest growing wavelength for spinodal decomposition in Al-Li alloys. It is shown that the gradient coefficient of congruently ordered Al-Li alloys is much larger than that of the disordered system. In such an alloy system, the calculated fastest growing wavelength is approximately 10 nm, which is an order of magnitude larger than the experimentally observed domain size. This may provide a theoretical explanation why spinodal decomposition after a congruent ordering is dominated by the antiphase boundaries.Received: 17 November 2003, Published online: 2 April 2004PACS: 64.75. + g Solubility, segregation, and mixing; phase separation - 81.30.-t Phase diagrams and microstructures developed by solidification and solid-solid phase transformations - 05.70.Ln Nonequilibrium and irreversible thermodynamics  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号