首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We studied the enantioselective hydrogenation of ethyl pyruvate (EP) and ketopantolactone (KPL) under mild experimental conditions (hydrogen pressure 1 bar, room temperature) on Pt-alumina catalyst modified with O-methyl derivatives of parent cinchona alkaloids (MeOCD, MeOCN, MeOQN, MeOQD) in two solvents with highly different polarities (AcOH, toluene). The best ee's were achieved (91–96%) using MeOCD and MeOQN modifiers in AcOH. Hydrogenation, especially in the presence of the chiral modifiers MeOCN and MeOQD in toluene proceeded with exceptionally low enantioselectivities (35–46% for EP and 2–4% for KPL) as compared to the already well-known Pt-MeOCD catalyst (ee%: 71–74 for EP, 38–48 for KPL). Results of the hydrogenations of the modifiers and studies on the hydrogenation of substrates using modifier mixtures suggested that the low ee are attributable to stereochemical reasons. Namely, it seems justified to suppose that the low ee observed is dependent on the various tilted adsorbed structures of the substrate and modifier 1:1 intermediate complex responsible for enantiodifferentiation.  相似文献   

2.
In competitive racemic hydrogenation of methyl benzoylformate (MBF) + ethyl pyruvate (EP) binary mixture over Pt/Al(2)O(3): k(MBF) > k(EP), but in competitive enantioselective hydrogenation k(MBF) < k(EP); the phenomenon verified for the first time is dependent on the adsorption strength of the surface complexes of various compositions (MBF-Pt, EP-Pt, MBF-CD-Pt, EP-CD-Pt, CD = cinchonidine).  相似文献   

3.
4.
New modifiers were prepared from -tryptophane and tested in the enantioselective hydrogenation of ethyl pyruvate over commercial alumina supported platinum catalyst. Most of these molecules induced only low enantiomeric excesses (ee). (S)-3-(1-methyl-indol-3-yl)-2-methylamino-propan-1-ol was found to be the most effective. Using this modifier under mild reaction conditions (1 bar hydrogen pressure, 273 K), enantiomeric excess up to 43% was obtained. Due to the transformation of the modifier evidenced by ESI-MS, a slight increase in hydrogen pressure led to a dramatic drop of enantioselectivity. An interesting inversion of the sense of enantioselectivity was observed in the case of this modifier when the reaction was carried out in acetic acid instead of toluene. A possible explanation for this phenomenon is proposed.  相似文献   

5.
Summary The retention order of the enantiomers of clevedipine (solute no 1), a shortacting blood pressure reducer, was controlled by type of organic modifier. With 1-propanol as, mobile phase modifier the (R)-form eluted first and by using methanol, the (S)-form was first to elute. These effects could also be seen for the hydrolysed analogue, to clevedipine, an acid (solute no 2). The reversal of retention order was then obtained when 1-propanol was replaced by acetonitrile. An oxidized analogue to clevedipine, a pyridine (solute no 3), was also tested regarding reversal of retention order of its enantiomers. In this case the retention order could not be controlled by type of organic modifier. The influence of the mobile phase buffer pH on enantioselective retention was also studied for the three substances. For clevidipine and the oxidized analogue, a high mobile phase pH favored enantioselective resolution while the opposite result was obtained for the hydrolysed analogue. Temperature studies were also performed, and enthalpies and entropies at different mobile phase pH:s using different organic modifiers were calculated, in order to promote an understanding of the thermodynamic driving forces for retention in the systems. Optimized chromatographic systems were used to determine less than 0.1% of an enantiomeric impurity in (R)- and (S)-clevidipine.  相似文献   

6.
Summary A capillary electrophoretic method, with divalent cations as complexing agents in the electrolyte, has been developed for separation and determination of the low molecular weight organic acids most commonly found in wine, viz. formic, fumaric, succinic, oxalic, malic, tartaric, acetic, lactic, and citric acids. The separation conditions optimized were electrolyte concentration, organic flow modifier concentration, type and concentration of complexing agents in the electrolyte, and injection time. The best resolution of some of the acids studied was achieved by use of an electrolyte containing tetraborate buffer (10mm) at pH 9.3, an organic flow modifier (tetradecyltrimethylammonium hydroxide), and Ca2+ (10 ppm) and Mg2+ (10 ppm) as complexing agents. Other conditions used in the method were hydrostatic injection (10 cm height for 30 s), detection at 185 nm, and temperature 20°C. For all the acids studied detector response was linear for the concentration ranges considered. The repeatability of each point on the calibration plot for standards (n=4) was generally better than 1% the method was applied to samples of must, wine, brandy, and vinegar from the Jerez region.  相似文献   

7.
The enantioselective hydrogenation of ethyl pyruvate (EtPy) was studied in toluene and in acetic acid, under identical reaction conditions (H2pressure 1 bar, Pt-alumina catalyst E 4759, dihydrocinchonidine (DHCD) concentration 0.001- 0.1 mmol/L). The DHCD concentration necessary for achieving maximal enantioselectivity (i.e. 80% ee in toluene and 90% ee in acetic acid) is higher by one order of magnitude in toluene than in acetic acid. This relatively high difference suggests a difference in reaction mechanism. This study calls attention to the formation of new chiral surface sites via chemisorption of DHCD on platinum atoms and the possible role of such sites in enantioselection.  相似文献   

8.
Summary Reversed-phase high-performance liquid chromatographic methods were developed for the separation of the enantiomers of five glycine and twelve alanine analogues. The enantioselective separation involved two methods. The direct separations were performed on chiral stationary phases containing a macrocyclic glycopeptide antibiotic: teicoplanin (Chirobiotic T column), ristocetin A (Chirobiotic R column) or chiral crown ether (Crownpak CR(+) column). The indirect methods involved pre-column derivatization with the chiral derivatizing agents 2,3,4,6-tetra-O-acetyl-β-D-glucopyranosyl isothiocyanate andN-α-(2,4-dinitro-5-fluorophenyl)-L-alaninamide (Marfey's reagent). The different methods were compared in systematic chromatographic examinations. The effects of organic modifier content, mobile phase composition, pH and flow rate on the separation were investigated. Presented at Balaton Symposium '01 on High-Performance Separation Methods, Siófok, Hungary, September 2–4, 2001  相似文献   

9.
Enantioselectivity in heterogeneous catalysis strongly depends on the chirality transfer between catalyst surface and all reactants, intermediates, and the product along the reaction pathway. Herein we report the first enantioselective on‐surface synthesis of molecular structures from an initial racemic mixture and without the need of enantiopure modifier molecules. The reaction consists of a trimerization via an unidentified bonding motif of prochiral 9‐ethynylphenanthrene (9‐EP) upon annealing to 500 K on the chiral Pd3‐terminated PdGa{111} surfaces into essentially enantiopure, homochiral 9‐EP propellers. The observed behavior strongly contrasts the reaction of 9‐EP on the chiral Pd1‐terminated PdGa{111} surfaces, where 9‐EP monomers that are in nearly enantiopure configuration, dimerize without enantiomeric excess. Our findings demonstrate strong chiral recognition and a significant ensemble effect in the PdGa system, hence highlighting the huge potential of chiral intermetallic compounds for enantioselective synthesis and underlining the importance to control the catalytically active sites at the atomic level.  相似文献   

10.
A chiral stationary phase has been prepared from the 3,5-dimethylphenylcarbamate of cellulose chemically bonded to 3-aminopropylsilica gel at the 6-positions of the glucose units. The phase has been used to study direct liquid chromatographic enantioselective separation of five racemates. The effects on resolution of modifiers (alcohols, THF, and chloroform), flow rate, and temperature were investigated. It was found that the concentration and structure of the alcohol modifier can affect the separation; enantiomer separations were improved to different extents by addition of THF or chloroform to the mobile phase. Flow rate and temperature can also effect the resolution of racemates. In the range 10–40°C there was a linear relationship between ln k (or ln α) and 1/T (r > 0.98) for four of the compounds. These results indicate retention mechanism does not change as a function of temperature.  相似文献   

11.
Summary Platinum catalysts (1 wt.%) supported on MCM-41 type and SiO2have been prepared, characterized and evaluated in the enantioselective hydrogenation of 1-phenyl-1,2-propanedione at 298 K and 20 bar of hydrogen pressure, using cinchonidine (CD) as chiral modifier. Chemisorption and TEM results revealed that both catalysts posses similar metal dispersion, however, significant differences in the catalytic behavior were observed. With dichloromethane as solvent, high hydrogenation rates and ee values around 47% were obtained for the Pt/MCM-41 catalyst. This fact is attributed to a confinement effect. The initial reaction rate is strongly dependent on the CD concentration, and the reaction rate (or ee) vsCD concentration plot exhibits bell-type curves. The main products were (R) -1-hydroxy-1-phenylpropanone and (S) -1-hydroxy-1-phenylpropanone.</o:p>  相似文献   

12.
A simple, rapid and sensitive analytical procedure for the measurement of celecoxib (CXB) levels in skin samples after in vitro penetration studies was developed and validated. In vitro permeability studies in porcine skin were performed for quantification of CXB at different layers of skin, the stratum corneum (SC) and epidermis plus dermis (EP + D) as well as in the acceptor solution (AS) to assess CXB permeation through skin. CXB was quantified by HPLC using a C18 column and UV detection at 251 nm. The mobile phase was methanol–water 72:28 (v/v) and the flow‐rate was 0.8 mL/min. The CXB retention time was 5 min. The assay was linear for CBX in the concentration range of 0.1–3.0 μg/mL in the AS (drug permeated through skin) and 5.0–50.0 μg/mL for drug retained in SC and [EP + D] in vitro. The linear correlation coefficients for the different calibration curves were equal or greater than 0.99. Intra‐ and inter‐assay variabilities were below 8.0%. Extraction of CXB from skin samples showed recoveries higher than 95.0% after 15 min of ultrasonic sound and centrifugation at 2500 rpm for 3 min. The method was considered appropriate for the assay of CXB in skin samples, after in vitro cutaneous penetration studies. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

13.
Different classes of cyclopropanes derived from Meldrum's acid (=2,2‐dimethyl‐1,3‐dioxane‐4,6‐dione; 4 ), dimethyl malonate ( 5 ), 2‐diazo‐3‐(silyloxy)but‐3‐enoate 16 , 2‐diazo‐3,3,3‐trifluoropropanoate 18 , diazo(triethylsilyl)acetate 24a , and diazo(dimethylphenylsilyl)acetate 24b were prepared via dirhodium(II)‐catalyzed intermolecular cyclopropanation of a set of olefins 3 (Schemes 1 and 46). The reactions proceeded with either diazo‐free phenyliodonium ylides or diazo compounds affording the desired cyclopropane derivatives in either racemic or enantiomer‐enriched forms. The intramolecular cyclopropanation of allyl diazo(triethylsilyl)acetates 28, 30 , and 33 were carried out in the presence of the chiral dirhodium(II) catalyst [Rh2{(S)‐nttl)4}] ( 9 ) in toluene to afford the corresponding cyclopropane derivatives 29, 31 and 34 with up to 37% ee (Scheme 7). An efficient enantioselective chiral separation method based on enantioselective GC and HPLC was developed. The method provides information about the chemical yields of the cyclopropane derivatives, enantioselectivity, substrate specifity, and catalytic activity of the chiral catalysts used in the inter‐ and intramolecular cyclopropanation reactions and avoids time‐consuming workup procedures.  相似文献   

14.
CE methods with capacitively coupled contactless conductivity detection (C4D) were developed for the enantiomeric separation of the following stimulants: amphetamine (AP), methamphetamine (MA), ephedrine (EP), pseudoephedrine (PE), norephedrine (NE) and norpseudoephedrine (NPE). Acetic acid (pH 2.5 and 2.8) was found to be the optimal background electrolyte for the CE‐C4D system. The chiral selectors, carboxymethyl‐β‐cyclodextrin (CMBCD), heptakis(2,6‐di‐O‐methyl)‐β‐cyclodextrin (DMBCD) and chiral crown ether (+)‐(18‐crown‐6)‐2,3,11,12‐tetracarboxylic acid (18C6H4), were investigated for their enantioseparation properties in the BGE. The use of either a single or a combination of two chiral selectors was chosen to obtain optimal condition of enantiomeric selectivity. Enantiomeric separation of AP and MA was achieved using the single chiral selector CMBCD and (hydroxypropyl)methyl cellulose (HPMC) as the modifier. A combination of the two chiral selectors, CMBCD and DMBCD and HPMC as the modifier, was required for enantiomeric separation of EP and PE. In addition, a combination of DMBCD and 18C6H4 was successfully applied for the enantiomeric separation of NE and NPE. The detection limits of the enantiomers were found to be in the range of 2.3–5.7 μmol/L. Good precisions of migration time and peak area were obtained. The developed CE‐C4D method was successfully applied to urine samples of athletes for the identification of enantiomers of the detected stimulants.  相似文献   

15.
An emulsion bioreactor for production of (2R,3S)-3-(4-methoxyphenyl) glycidic acid methyl ester ([-]MPGM) from a racemic mixture ([±]MPGM) using the lipase fromSerratia marcescens has been proposed. Kinetics of hydrolyzing reaction and purification of (-)MPGM from the reaction mixture were investigated to provide a basis for industrial application of this bioreactor. The hydrolyzing reaction in the bioreactor proceeded at a rate that was first order in substrate concentration. The reaction rate was affected by a stirring speed and the ratio of the aqueous phase containing lipase to the toluene phase containing substrate. Phase separation after the enzymatic reaction was accomplished by addition of surfactant to the reaction mixture, and crystalline (-)MPGM with a chemical purity of 100% and optical purity of 100% enantiomeric excess was obtained in a high yield of 40–43% by concentration of the toluene solution.  相似文献   

16.
Enantioselective hydrogenation of α-ketoesters with cinchona-modified platinum catalysts has been studied theoretically in order to rationalize the interaction between the chiral modifier and the substrate. The structure of the probable transition complex has been calculated for the system methyl pyruvate (substrate)–cinchonidine (modifier) using quantum chemistry techniques at both ab initio and semiempirical levels and molecular mechanics. The calculations indicate that crucial interaction occurs via hydrogen bonding of the quinuclidine nitrogen and the oxygen of the α-carbonyl moiety of methyl pyruvate and confirm earlier experimental evidence that the quinuclidine nitrogen of the cinchonidine is involved in the interaction leading to enantiodifferentiation. The resulting complex, which resembles to a half-hydrogenated state of the substrate, is shown to be a possible transition state for the enantioselective hydrogenation of α-ketoesters. © 1994 John Wiley & Sons, Inc.  相似文献   

17.
《Analytical letters》2012,45(7):1451-1461
Abstract

Cellulose and cellulose derivatives are biopolymers that are often used as stationary phases for the separation of enantiomers. Describing the mechanism of such separations is a difficult task due to the complexity of these phases. In the present study, direct enantiomeric resolution of ethofumesate has been achieved, using hexane as the mobile phase with various alcoholic modifiers on cellulose tri(3,5‐dimethylphenylcarbamate) chiral stationary phase (CDMPC CSP). The influence of the mobile phase composition and the column temperature on the chiral separation was studied. It was found that at a constant temperature and within a certain range of alcohol modifier concentration, the conformation of the polymeric phase, and the selective adsorption sites were not affected by alcohol modifier concentration. The type and the concentration of the alcoholic modifiers influenced the retention factor and the separation factor. Ethofumesate gained the best enantioseparation using sec‐butanol as alcoholic modifier at 25°C with α‐value 1.70. And the separation factor decreased with the increase of the column temperature. The van't Hoff plots were linear (R 2>0.96) for ethofumesate from 25°C to 50°C. That showed the enantioselective interactions do not change over the temperature range studied. Furthermore the values of ΔH° and ΔS° were both negative, which indicated an enthalpy‐driven separation. And the possible chiral recognition mechanism of the analyte and CDMPC was discussed. It was found that hydrogen bonding plays an important role on enantioseparation of CDMPC CSP. The inclusion and fitness of solute shape in the chiral cavity significantly contributed to the enantioseparation of solute.  相似文献   

18.
2-Methoxyphenol (2MP) solutes form weak complexes with toluene solvent molecules. The complexes are unusual in that the 2MP hydroxyl has an intramolecular hydrogen bond and simultaneously forms an intermolecular hydrogen bond with toluene and other aromatic solvents. In the equilibrated solute-solvent solution, there exists approximately the same concentration of 2MP-toluene complex and free 2MP. The very fast formation and dissociation (chemical exchange) of this type of three-centered hydrogen bond complex were observed in real time under thermal equilibrium conditions with two-dimensional (2D) infrared vibrational echo spectroscopy. Chemical exchange is manifested in the 2D spectrum by the growth of off-diagonal peaks. Both the formation and dissociation can be characterized in terms of the dissociation time constant, which was determined to be 3 ps for the 2MP-toluene complex. The intra-intermolecular hydrogen bond formation is influenced by subtle details of the molecular structure. Although 2MP forms a complex with toluene, it is demonstrated that 2-ethoxyphenol (2EP) does not form complexes to any significant extent. Density functional calculations at the B3LYP/6-31+G(d,p) level suggest that steric effects caused by the extra methyl group in 2EP are responsible for the difference.  相似文献   

19.
Intermolecular [2+2] photocycloadditions represent the most versatile and widely applicable of photochemical reactions. For the first time, such intermolecular reactions have been carried out in a catalytic fashion using a chiral triplet sensitizer, with high enantioselectivity (up to 92 % ee). The low catalyst loading (2.5–5 mol %) underlines the high efficiency of the process both in terms of reaction acceleration and differentiation of the enantiotopic faces of the substrate. The substrate is anchored to the chiral catalyst through noncovalent interactions (hydrogen bonds), thus providing a chiral environment in which the enantioselective photocycloaddition proceeds. The densely functionalized products present numerous possibilities for further synthetic transformations.  相似文献   

20.
Precision, reproducibility and lower limit of quantitation (LLOQ) are important characteristics of a quantitative method. We have investigated these properties for Ximelagatran (Xi), which has a high tendency to form doubly charged ions in electrospray ionization (ESI), by studying the percentage of doubly charged species formed when varying the formic acid (FA) concentration, analyte concentration, amount of organic modifier and flow rate. It was found that the percentage of [Xi + 2H]2+ can be controlled to be more than 90% or less than 10% by varying the amount of FA present, and that the change between these values is dramatic. Furthermore, the percentage of [Xi + 2H]2+ formed decreases with increased analyte concentration and increased flow rate. No apparent relationship with the amount of organic modifier was found. The results have the implication that, by carefully controlling the selected parameters, the LLOQ, precision and reproducibility can be improved. We have compared the fragmentation of the singly and doubly charged species and concluded that the [Xi + 2H]2+ ion is more inclined to undergo fragmentation than [Xi + H]+. As a consequence, unusual instrumental settings had to be used for the experiments. The fragmentation patterns are to a great extent similar, but the doubly charged species is more inclined to generate low‐mass product ions. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号