首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Low Tucker rank tensor completion has wide applications in science and engineering. Many existing approaches dealt with the Tucker rank by unfolding matrix rank. However, unfolding a tensor to a matrix would destroy the data's original multi-way structure, resulting in vital information loss and degraded performance. In this article, we establish a relationship between the Tucker ranks and the ranks of the factor matrices in Tucker decomposition. Then, we reformulate the low Tucker rank tensor completion problem as a multilinear low rank matrix completion problem. For the reformulated problem, a symmetric block coordinate descent method is customized. For each matrix rank minimization subproblem, the classical truncated nuclear norm minimization is adopted. Furthermore, temporal characteristics in image and video data are introduced to such a model, which benefits the performance of the method. Numerical simulations illustrate the efficiency of our proposed models and methods.  相似文献   

2.
We investigate the problem of robust matrix completion with a fraction of observation corrupted by sparsity outlier noise. We propose an algorithmic framework based on the ADMM algorithm for a non-convex optimization, whose objective function consists of an $\ell_1$ norm data fidelity and a rank constraint. To reduce the computational cost per iteration, two inexact schemes are developed to replace the most time-consuming step in the generic ADMM algorithm. The resulting algorithms remarkably outperform the existing solvers for robust matrix completion with outlier noise. When the noise is severe and the underlying matrix is ill-conditioned, the proposed algorithms are faster and give more accurate solutions than state-of-the-art robust matrix completion approaches.  相似文献   

3.
The nuclear norm minimization problem is to find a matrix with the minimum nuclear norm subject to linear and second order cone constraints. Such a problem often arises from the convex relaxation of a rank minimization problem with noisy data, and arises in many fields of engineering and science. In this paper, we study inexact proximal point algorithms in the primal, dual and primal-dual forms for solving the nuclear norm minimization with linear equality and second order cone constraints. We design efficient implementations of these algorithms and present comprehensive convergence results. In particular, we investigate the performance of our proposed algorithms in which the inner sub-problems are approximately solved by the gradient projection method or the accelerated proximal gradient method. Our numerical results for solving randomly generated matrix completion problems and real matrix completion problems show that our algorithms perform favorably in comparison to several recently proposed state-of-the-art algorithms. Interestingly, our proposed algorithms are connected with other algorithms that have been studied in the literature.  相似文献   

4.
矩阵填充是指利用矩阵的低秩特性而由部分观测元素恢复出原矩阵,在推荐系统、信号处理、医学成像、机器学习等领域有着广泛的应用。采用精确线搜索的交替最速下降法由于每次迭代计算量小因而对大规模问题的求解非常有效。本文在其基础上采用分离地精确线搜索,可使得每次迭代下降更多但计算量相同,从而可望进一步提高计算效率。本文分析了新算法的收敛性。数值结果也表明所提出的算法更加有效。  相似文献   

5.
韩如意  王川龙 《计算数学》2018,40(3):325-336
 本文提出Toeplitz矩阵填充的四种流形逼近算法。在左奇异向量空间中对已知部分运用最小二乘法逼近,形成新的可行矩阵;并将对角线上的元素分别用均值,l1范数,l范数和中间数四种方法逼近使得迭代后的矩阵仍保持Toeplitz结构,节约了奇异向量空间的分解时间。最终找到合理的低秩矩阵来逼近未知的高秩矩阵,进而精确地完成Toeplitz矩阵的填充。理论上,分析了在一定条件下算法的收敛性。实验上,通过取不同的采样密度进行数值实验展示了四种算法的优劣。实验结果说明均值算法和l范数算法大多用的时间较少,但是当采样密度和矩阵规模较大时,中间数算法的精度较高。  相似文献   

6.
The matrix rank minimization problem has applications in many fields, such as system identification, optimal control, low-dimensional embedding, etc. As this problem is NP-hard in general, its convex relaxation, the nuclear norm minimization problem, is often solved instead. Recently, Ma, Goldfarb and Chen proposed a fixed-point continuation algorithm for solving the nuclear norm minimization problem (Math. Program., doi:, 2009). By incorporating an approximate singular value decomposition technique in this algorithm, the solution to the matrix rank minimization problem is usually obtained. In this paper, we study the convergence/recoverability properties of the fixed-point continuation algorithm and its variants for matrix rank minimization. Heuristics for determining the rank of the matrix when its true rank is not known are also proposed. Some of these algorithms are closely related to greedy algorithms in compressed sensing. Numerical results for these algorithms for solving affinely constrained matrix rank minimization problems are reported.  相似文献   

7.
This paper deals with the problem of recovering an unknown low‐rank matrix from a sampling of its entries. For its solution, we consider a nonconvex approach based on the minimization of a nonconvex functional that is the sum of a convex fidelity term and a nonconvex, nonsmooth relaxation of the rank function. We show that by a suitable choice of this nonconvex penalty, it is possible, under mild assumptions, to use also in this matrix setting the iterative forward–backward splitting method. Specifically, we propose the use of certain parameter dependent nonconvex penalties that with a good choice of the parameter value allow us to solve in the backward step a convex minimization problem, and we exploit this result to prove the convergence of the iterative forward–backward splitting algorithm. Based on the theoretical results, we develop for the solution of the matrix completion problem the efficient iterative improved matrix completion forward–backward algorithm, which exhibits lower computing times and improved recovery performance when compared with the best state‐of‐the‐art algorithms for matrix completion. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

8.
The numerical rank determination frequently occurs in matrix computation when the conventional exact rank of a hidden matrix is desired to be recovered. This paper presents a Matlab package RankRev that implements two efficient algorithms for computing the numerical rank and numerical subspaces of a matrix along with updating/downdating capabilities for making adjustment to the results when a row or column is inserted/deleted. The package and the underlying algorithms are accurate, reliable, and much more efficient than the singular value decomposition when the matrix is of low rank or low nullity.  相似文献   

9.
郭雄伟  王川龙 《计算数学》2022,44(4):534-544
本文提出了一种求解低秩张量填充问题的加速随机临近梯度算法.张量填充模型可以松弛为平均组合形式的无约束优化问题,在迭代过程中,随机选取该组合中的某一函数进行变量更新,有效减少了张量展开、矩阵折叠及奇异值分解带来的较大的计算花费.本文证明了算法的收敛率为$O (1/k^{2})$.最后,随机生成的和真实的张量填充实验结果表明新算法在CPU时间上优于现有的三种算法.  相似文献   

10.
The goal of the matrix completion problem is to retrieve an unknown real matrix from a small subset of its entries. This problem comes up in many application areas, and has received a great deal of attention in the context of the Netflix challenge. This setup usually represents our partial knowledge of some information domain. Unknown entries may be due to the unavailability of some relevant experimental data. One approach to this problem starts by selecting a complexity measure of matrices, such as rank or trace norm. The corresponding algorithm outputs a matrix of lowest possible complexity that agrees with the partially specified matrix. The performance of the above algorithm under the assumption that the revealed entries are sampled randomly has received considerable attention (e.g., Refs. Srebro et al., 2005; COLT, 2005; Foygel and Srebro, 2011; Candes and Tao, 2010; Recht, 2009; Keshavan et al., 2010; Koltchinskii et al., 2010). Here we ask what can be said if the observed entries are chosen deterministically. We prove generalization error bounds for such deterministic algorithms, that resemble the results of Refs. Srebro et al. (2005); COLT (2005); Foygel and Srebro (2011) for the randomized algorithms. We still do not understand which sets of entries in a given matrix can be used to properly reconstruct it. Our hope is that the present work sheds some light on this problem. © 2013 Wiley Periodicals, Inc. Random Struct. Alg., 45, 306–317, 2014  相似文献   

11.
In this paper, we study robust quaternion matrix completion and provide a rigorous analysis for provable estimation of quaternion matrix from a random subset of their corrupted entries. In order to generalize the results from real matrix completion to quaternion matrix completion, we derive some new formulas to handle noncommutativity of quaternions. We solve a convex optimization problem, which minimizes a nuclear norm of quaternion matrix that is a convex surrogate for the quaternion matrix rank, and the ?1‐norm of sparse quaternion matrix entries. We show that, under incoherence conditions, a quaternion matrix can be recovered exactly with overwhelming probability, provided that its rank is sufficiently small and that the corrupted entries are sparsely located. The quaternion framework can be used to represent red, green, and blue channels of color images. The results of missing/noisy color image pixels as a robust quaternion matrix completion problem are given to show that the performance of the proposed approach is better than that of the testing methods, including image inpainting methods, the tensor‐based completion method, and the quaternion completion method using semidefinite programming.  相似文献   

12.
Fixed point and Bregman iterative methods for matrix rank minimization   总被引:5,自引:0,他引:5  
The linearly constrained matrix rank minimization problem is widely applicable in many fields such as control, signal processing and system identification. The tightest convex relaxation of this problem is the linearly constrained nuclear norm minimization. Although the latter can be cast as a semidefinite programming problem, such an approach is computationally expensive to solve when the matrices are large. In this paper, we propose fixed point and Bregman iterative algorithms for solving the nuclear norm minimization problem and prove convergence of the first of these algorithms. By using a homotopy approach together with an approximate singular value decomposition procedure, we get a very fast, robust and powerful algorithm, which we call FPCA (Fixed Point Continuation with Approximate SVD), that can solve very large matrix rank minimization problems (the code can be downloaded from http://www.columbia.edu/~sm2756/FPCA.htm for non-commercial use). Our numerical results on randomly generated and real matrix completion problems demonstrate that this algorithm is much faster and provides much better recoverability than semidefinite programming solvers such as SDPT3. For example, our algorithm can recover 1000 × 1000 matrices of rank 50 with a relative error of 10?5 in about 3?min by sampling only 20% of the elements. We know of no other method that achieves as good recoverability. Numerical experiments on online recommendation, DNA microarray data set and image inpainting problems demonstrate the effectiveness of our algorithms.  相似文献   

13.
The robustness of regression coefficient estimator is a hot topic in regression analysis all the while. Since the response observations are not independent, it is extraordinarily difficult to study this problem for random effects growth curve models, especially when the design matrix is non-full of rank. The paper not only gives the necessary and sufficient conditions under which the generalized least square estimate is identical to the the best linear unbiased estimate when error covariance matrix is an arbitrary positive definite matrix, but also obtains a concise condition under which the generalized least square estimate is identical to the maximum likelihood estimate when the design matrix is full or non-full of rank respectively. In addition, by using of the obtained results, we get some corollaries for the the generalized least square estimate be equal to the maximum likelihood estimate under several common error covariance matrix assumptions. Illustrative examples for the case that the design matrix is full or non-full of rank are also given.  相似文献   

14.
The most widely used stable methods for numerical determination of the rank of a matrix A are the singular value decomposition and the QR algorithm with column interchanges. Here two algorithms are presented which determine rank and nullity in a numerically stable manner without using column interchanges. One algorithm makes use of the condition estimator of Cline, Moler, Stewart, and Wilkinson and relative to alternative stable algorithms is particularly efficient for sparse matrices. The second algorithm is important in the case that one wishes to test for rank and nullity while sequentially adding columns to a matrix.  相似文献   

15.
We study the least squares functional of the canonical polyadic tensor decomposition for third order tensors by eliminating one factor matrix, which leads to a reduced functional. An analysis of the reduced functional leads to several equivalent optimization problem, such as a Rayleigh quotient or a projection. These formulations are the basis of several new algorithms as follows: the Centroid Projection method for efficient computation of suboptimal solutions and fixed‐point iteration methods for approximating the best rank‐1 and the best rank‐R decompositions under certain nondegeneracy conditions. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

16.
在用多项式进行曲线拟合等实际问题中,需要求解以范德蒙型矩阵VT为系数阵的线性方程组VTx=b的最小二乘解.  相似文献   

17.
This paper deals with questions raised by R.A. Brualdi concerning the structure matrix of (0,1)-matrices with fixed row and column sum vectors; namely, determining its rank and—in case the matrices are square—its eigenvalues. It turns out that the trace of the structure matrix has some interesting properties. The rank of the structure matrix has the values 1,2, or 3; this yields a classification of econometric models.  相似文献   

18.
The problem of cancelling a specified part of the zeros of a completely general rational matrix function by multiplication with an appropriate invertible rational matrix function is investigated from different standpoints. Firstly, the class of all factors that dislocate the zeros and feature minimal McMillan degree are derived. Further, necessary and sufficient existence conditions together with the construction of solutions are given when the factor fulfills additional assumptions like being J-unitary, or J-inner, either with respect to the imaginary axis or to the unit circle. The main technical tool are centered realizations that deliver a sufficiently general conceptual support to cope with rational matrix functions which may be polynomial, proper or improper, rank deficient, with arbitrary poles and zeros including at infinity. A particular attention is paid to the numerically-sound construction of solutions by employing at each stage unitary transformations, reliable numerical algorithms for eigenvalue assignment and efficient Lyapunov equation solvers.  相似文献   

19.
Minimizing the rank of a matrix subject to constraints is a challenging problem that arises in many applications in machine learning, control theory, and discrete geometry. This class of optimization problems, known as rank minimization, is NP-hard, and for most practical problems there are no efficient algorithms that yield exact solutions. A popular heuristic replaces the rank function with the nuclear norm—equal to the sum of the singular values—of the decision variable and has been shown to provide the optimal low rank solution in a variety of scenarios. In this paper, we assess the practical performance of this heuristic for finding the minimum rank matrix subject to linear equality constraints. We characterize properties of the null space of the linear operator defining the constraint set that are necessary and sufficient for the heuristic to succeed. We then analyze linear constraints sampled uniformly at random, and obtain dimension-free bounds under which our null space properties hold almost surely as the matrix dimensions tend to infinity. Finally, we provide empirical evidence that these probabilistic bounds provide accurate predictions of the heuristic’s performance in non-asymptotic scenarios.  相似文献   

20.
Hermitian and unitary matrices are two representatives of the class of normal matrices whose full eigenvalue decomposition can be stably computed in quadratic computing complexity once the matrix has been reduced, for instance, to tridiagonal or Hessenberg form. Recently, fast and reliable eigensolvers dealing with low‐rank perturbations of unitary and Hermitian matrices have been proposed. These structured eigenvalue problems appear naturally when computing roots, via confederate linearizations, of polynomials expressed in, for example, the monomial or Chebyshev basis. Often, however, it is not known beforehand whether or not a matrix can be written as the sum of a Hermitian or unitary matrix plus a low‐rank perturbation. In this paper, we give necessary and sufficient conditions characterizing the class of Hermitian or unitary plus low‐rank matrices. The number of singular values deviating from 1 determines the rank of a perturbation to bring a matrix to unitary form. A similar condition holds for Hermitian matrices; the eigenvalues of the skew‐Hermitian part differing from 0 dictate the rank of the perturbation. We prove that these relations are linked via the Cayley transform. Then, based on these conditions, we identify the closest Hermitian or unitary plus rank k matrix to a given matrix A, in Frobenius and spectral norm, and give a formula for their distance from A. Finally, we present a practical iteration to detect the low‐rank perturbation. Numerical tests prove that this straightforward algorithm is effective.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号