首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Zuo Y  Yang Y  Zhu Z  He W  Aydin Z 《Talanta》2011,83(5):53-1710
Uric acid is the end-product of purine metabolism and a major antioxidant in humans. The concentrations of uric acid in plasma and urine are associated with various diseases and routinely measured in clinical and biomedical laboratories using enzymatic conversion and colorimetric measurement. In this study a hydrophilic interaction chromatographic (HILIC) method was developed for simultaneous determination of uric acid and creatinine, a biomarker of urine dilution and renal function, in human urine. Urine samples were pretreated by dilution, protein precipitation, centrifugation and filtration. Uric acid and creatinine were separated from other components in urine samples and quantified using HILIC chromatography. A linear relationship between the ratio of the peak area of the standards to that of the internal standard and the concentration of the standards was obtained for both uric acid and creatinine with the square of correlation coefficients >0.999 for both analytes. The detection limits were 0.04 μg/mL for creatinine and 0.06 μg/mL for uric acid. The described HILIC method has proved to be simple, accurate, robust and reliable.  相似文献   

2.
Jen JF  Hsiao SL  Liu KH 《Talanta》2002,58(4):711-717
A simple, rapid, and eco-friendly analytical method for simultaneous determination of uric acid and creatinine in urine applying high performance liquid chromatography (HPLC) is described. After dilution, de-protein, and filtration, the sample solution was injected to separate the species with C-18 column by an eluent containing 0.05 M ammonium phosphate buffer at pH 7.4. An UV detector was used to monitor the separation of species at 235 nm. Optimum conditions for separation and detection were investigated. Results indicated that under optimized condition measurements were achieved within 13 min. The detection limits were 0.127 and 0.156 mug ml(-1) for uric acid and creatinine respectively. The recovery was 95% (0.57% RSD) for uric acid and 99.2% (0.98% RSD) for creatinine, from five measurements. Real urine specimens were tested.  相似文献   

3.
A procedure is described for the rapid and simultaneous determination of allantoin, creatinine, uric acid, hypoxanthine and xanthine in sheep urine. Separation was achieved on a Novapak C18 column under isocratic conditions. The mobile phase was potassium phosphate buffer (10 mM, pH 4.0). A flow-rate of 0.5 ml/min, detection at 218 nm and a column temperature of 25 degrees C were employed with a total analysis time of less than 15 min. Detection limits for allantoin, creatinine, uric acid, hypoxanthine and xanthine were 1.0, 0.5, 0.5, 0.5 and 0.2 micrograms/ml, respectively, at a signal-to-noise ratio of 3 in a 20-microliters injection volume of tenfold-diluted urine. This sensitivity permits the precise determination of these compounds in ruminants' urine.  相似文献   

4.
基于酸性条件下甲醛对尿酸-KMnO4发光反应的增敏作用,建立了在线稀释顺序注射化学发光联用技术测定人体液中尿酸的新方法。在选定的实验条件下的7个浓度梯度范围内,尿酸浓度在5.0×10-6mol/L~1.0×10-3mol/L范围内与发光强度呈良好线性关系,相关系数0.9942~0.9998,RSD在2.0%~3.5%之间,回收率为98.0%~103.0%。每小时可分析80个样品,在线稀释测定结果与手工稀释法一致。  相似文献   

5.
We have developed a novel analyser for the determination of vanillylmandelic acid, homovanillic acid and creatinine in urine by high-performance liquid chromatography using three different types of column, cation-exchange, anion-exchange and reversed-phase and the column-switching technique. In this procedure, 10 microliters of intact urine were directly injected into the cation-exchange column, and the pass-through fraction, containing vanillylmandelic acid and homovanillic acid was transferred to the anion-exchange column by column switching. The fraction partially purified from endogenous urinary impurities on the anion-exchange column was transferred to the reversed-phase column. Vanillylmandelic acid and homovanillic acid, separated by the solvent-switching technique, were detected fluorimetrically (excitation at 280 nm, emission at 320 nm). Then, creatinine eluted from the cation-exchange column is spectrophotometrically detected (254 nm). Therefore the successive simultaneous analysis of the three could be performed in a 15-min cycle; the within-assay coefficients of variation for normal and patients' urines were less than 1.9%, less than 3.3% and less than 3.0% for vanillylmandelic acid, homovanillic acid and creatinine, respectively; the recoveries averaged 100, 103 and 100%, respectively, for supplemented urines.  相似文献   

6.
A simple and reliable method based on capillary electrophoresis with electrochemical detection (CE–ED) was applied to study the effect of aerobic exercises on creatinine and uric acid concertration in saliva and urine. The pH value, the running buffer concentration, the SDS concentration, separation voltage, injection time and the potential applied to the working electrode were investigated to find the optimum conditions. The detection limits (S/N = 3) for creatinine and uric acid were 3.6 μmol L?1 and 0.86 μmol L?1, respectively. This method was successfully used in the rapid analysis of creatinine and uric acid in saliva samples. After aerobic exercises, creatinine concentration decreased, and uric acid concentration increased in saliva. In urine, the concentrations of creatinine and uric acid both increased after exercise.  相似文献   

7.
In an effort to characterize the pharmacokinetic behavior of the antimitotic agent N-desacetylcolchicine a selective, sensitive high-performance liquid chromatographic method was developed for the determination of N-desacetylcolchicine, demecolcine and colchicine in serum or urine. To 0.5 ml of serum or 0.1 ml of urine diluted to 0.5 ml were added 50 microliters demecolcine (2 micrograms/ml) which serves as the internal standard. The sample was extracted using a C2 reversed-phase solid extraction column. N-Desacetyl-colchicine, colchicine and the internal standard were eluted from the column with methanol. The combined eluates were evaporated to dryness and the residue was reconstituted with water. The reconstituted sample was injected into a C18 reversed-phase column and eluted using a mobile phase consisting of 0.1 M potassium dihydrogenphosphate, 5 mM 1-pentanesulfonic acid in methanol and acetonitrile with a final pH of 6.0, at a flow rate of 1.5 ml/min. N-Desacetylcolchicine, colchicine and the internal standard were detected using a variable-wavelength ultraviolet detector at 254 nm. The limit of detection was 0.4 ng/ml for desacetylcolchicine and 4.0 ng/ml for colchicine. The method is linear over a concentration range of 1.0-200 ng/ml. The method has been shown to be a rapid, reliable method to monitor N-desacetylcolchicine levels in clinical trials in cancer patients.  相似文献   

8.
《Microchemical Journal》2004,78(1):71-76
Thiamine (vitamin B1) was determined in human serum and urine by HPLC with fluorimetric detection of its oxidation product, thiochrome. The samples were injected directly into the chromatographic system without previous treatment or dilution. A column filled with an ultra-high molecular weight surface-modified polyethylene (PE) was able to separate matrix components from analyte and also to allow a good chromatographic resolution of thiamine. The interaction of thiamine, thiocrome and both matrices (serum and urine) with PE was studied off- and on-line to determine the optimal procedure for vitamin B1 determination. When carried off-line, matrix adsorption yield was 49 mg serum proteins/g polymer and components of 1000 μl urine/g polymer. In an on-line arrangement, the yield dropped to 10 mg/g and 150 μl/g, respectively. The matrix/analyte separation was carried out in an on-line procedure on a 50×4.6-mm, 25-μm PE column, using a water-sodium phosphate-methanol gradient elution. Part of the matrix was eluted within the first 2 min and thiamine after 3.8 min. The rest of the matrix retained on the column was eluted after thiamine at the last step of the gradient elution. Analysis time was 12 min. The within-day and day-to-day precision gave C.V. varying from 3.6% to 14.5% and recoveries from spiked samples were in the range of 84.8-98.8%.  相似文献   

9.
Analytical procedure for the determination of toxicologically relevant arsenic (the sum of arsenite, arsenate, monomethylarsonate and dimethylarsinate) in urine by flow injection hydride generation and collection of generated inorganic and methylated hydrides on an integrated platform of a transverse-heated graphite atomizer for electrothermal atomic absorption spectrometric determination (ETAAS) is elaborated. Platforms are pre-treated with 2.7 μmol of zirconium and then with 0.10 μmol of iridium which serve both as an efficient hydride sequestration medium and permanent chemical modifier. Arsine, monomethylarsine and dimethylarsine are generated from diluted urine samples (10–25-fold) in the presence of 50 mmol L−1 hydrochloric acid and 70 mmol L−1 l-cysteine. Collection, pyrolysis and atomization temperatures are 450, 500, 2100 and 2150 °C, respectively. The characteristic mass, characteristic concentration and limit of detection (3σ) are 39 pg, 0.078 μg L−1 and 0.038 μg L−1 As, respectively. The limits of detection in urine are ca. 0.4 and 1 μg L−1 with 10- and 25-fold dilutions. The sample throughput rate is 25 h−1. Applications to several urine CRMs are given.  相似文献   

10.
Destandau  Emilie  Lesellier  Eric 《Chromatographia》2008,67(11):985-988

A simple and reliable method based on capillary electrophoresis with electrochemical detection (CE–ED) was applied to study the effect of aerobic exercises on creatinine and uric acid concertration in saliva and urine. The pH value, the running buffer concentration, the SDS concentration, separation voltage, injection time and the potential applied to the working electrode were investigated to find the optimum conditions. The detection limits (S/N = 3) for creatinine and uric acid were 3.6 μmol L−1 and 0.86 μmol L−1, respectively. This method was successfully used in the rapid analysis of creatinine and uric acid in saliva samples. After aerobic exercises, creatinine concentration decreased, and uric acid concentration increased in saliva. In urine, the concentrations of creatinine and uric acid both increased after exercise.

  相似文献   

11.
Summary A simple, rapid, and reproducible method for the determination of urea, creatinine, and uric acid in human serum and urine by ion-pair reversed-phase high-performance liquid chromatography with UV detection (196 nm) has been developed. The method involves the pretreatment of serum samples with trichloroacetic acid and centrifugation followed by the isocratic separation of compounds on a -Bondapak C18 column using a mobile phase consisting of 1.25 mmol/l tetrabutylammonium phosphate. For urine samples no special pretreatment is necessary. In addition, this method allows, with some limitations, the determination of creatine in serum.  相似文献   

12.
The application of coupled in situ electrodeposition-electrothermal atomic absorption spectrometry (ED-ETAAS) to the determination of Pb in biological standard reference materials is described. In situ electrodeposition at a cell voltage of 3.0 V from 25-μl samples onto electrodeposited Pd is used to quantitatively separate the analyte from blood and urine matrices. With subsequent withdrawal of spent electrolyte, this overcomes the atomisation problems inherent with high salt and organic contents. ED-ETAAS is applied with minimal sample pre-treatment (acidification). The electrolysis process aids decomposition of the organic matrix, and the release of trace elements. Evolution of H2 at the cathode counters fouling of the Pd modifier surface. The palladium deposit is renewed in situ for each determination. For AMI certified lyophilised blood, diluted 1+3 with 0.1 M HCl (18.1 μg/l Pb), the R.S.D. was 3.0% (peak height; n=5) and the detection limit (3 σblank; n=5) was 1.5 μg/l. Results for certified blood samples were AMI 72.3±4.3 μg/l (certified 76.2±7.6 μg/l) and Seronorm 34.2±2.0 μg/l (36±4 μg/l). The result for NIST SRM 2670 normal urine acidified to 1% HNO3 was 8.1±0.6 μg/l (recommended value 10 μg/l).  相似文献   

13.
Twelve self-sustaining nonagenarians, 10 women and two men, aged 94+/-3 years, and eight institutionalised nonagenarians, eight women, aged 91+/-1 year as well as 11 control subjects, seven women and four men, aged 84+/-5 years entered the study. Urinary neopterin, an indicator of systemic immune activation, and serum thiobarbituric acid reactive substances (TBARS), a marker of lipoperoxidation, were determined initially, and collection of the blood and urine samples was repeated at 3-month interval. Neopterin was measured in the urine specimens by reversed-phase high performance liquid chromatography. A C(18) reversed-phase column 3.3x150 mm, 5 mum-diameter packing Separon SGX was used. Potassium phosphate buffer (15 mmol l(-1), pH 6.4) at flow rate of 0.8 ml min(-1) was used as mobile phase. After centrifugation (5 min, 1300xg) and diluting 100 mul of urine specimens with 1.0 ml of mobile phase containing 2 g of disodium-EDTA per litre, a 20 mul sample was injected on a column. Neopterin was identified by its native fluorescence (353 nm excitation, 438 nm emission). Creatinine was determined by Jaffé kinetic reaction after dilution of sample 1:50 (v/v). The concentration of neopterin in urine was expressed as neopterin/creatinine ratio (mumol mol(-1) creatinine). TBARS were determined spectrofluorometrically using LS-5 spectrofluorimeter (excitation wavelength 528 nm, emission wavelength 558 nm) after extraction with n-butanol treatment with thiobarbituric acid. The significance of differences between nonagenarians and control group was examined by ANOVA-Kruskal-Wallis tests, using statistical software NCSS 6.0.21 (Kaysville, UT, 1996). The decision on significance was based on P=0.05. Urinary neopterin was significantly higher in institutionalised compared to self-sustaining subjects and controls (625+/-565 vs. 203+/-63 mumol mol(-1) creatinine, and 198+/-128 mumol mol(-1) creatinine, respectively, P=0.006). The serum TBARS were higher in both groups of nonagenarians (3.23+/-1.16 mumol l(-1) and 2.69+/-0.39 vs. 2.12+/-0.83 mumol l(-1) for the self-sustaining, institutionalised and controls, respectively, P=0.023). We conclude that the fluorimetric determinations of urinary neopterin and serum TBARS can be useful for the monitoring health status in the elderly patients.  相似文献   

14.
建立了一种测定血清和尿液中尿酸和肌酐含量的超高效液相色谱-串联质谱联用(UPLC-MS/MS)方法. 样品经自动进样器引入液相色谱通过预柱富集和去除杂质后,直接引入质谱中进行分析. 采用正离子电喷雾电离模式下的多反应监控模式对肌酐进行定量分析,纯溶剂标准曲线的肌酐线性范围为0.03~400 μmol/L;基质标准曲线的肌酐线性范围为0.2~400 μmol/L;它们的最低定量限分别为0.03和0.2 μmol/L. 采用负离子电喷雾电离模式下的多反应监控模式对尿酸进行定量分析,纯溶剂标准曲线的尿酸线性范围为0.1~350 μmol/L;基质标准曲线的尿酸线性范围为0.5~300 μmol/L;它们的最低定量限分别为0.1和0.5 μmol/L. 该方法的提取回收率在91.8%~103.7%之间,日内和日间RSD分别小于5.9%和6.8%,满足生物分析的要求. 利用该方法进行抗痛风中药筛选及其作用机制研究,结果表明,与阳性对照药物别嘌呤醇和苯溴马隆相比,中药二妙丸、黄柏和苍术均能在一定程度上降低血尿酸水平,并可显著逆转肾功能损伤,对肾功能具有一定的保护作用.  相似文献   

15.
An automated method is described for the determination of zinc in human saliva by electrothermal atomic absorption spectrometry (ET AAS) after on-line dilution of samples with a significant reduction of sample consumption per analysis (<0.4 mL including the dead volume of the system). In order to fulfill this aim without changing the sample transport conduits during the experiments, a flow injection (FI) dilution system was constructed. Its principal parts are: one propulsion device (peristaltic pump, PP) for either samples, standards or washing solution all located in an autosampler tray and for the surfactant solution (Triton X-100) used as diluent, and a two-position time based solenoid injector (TBSI1) which allowed the introduction of 10 μL of either solution in the diluent stream. To avoid unnecessary waste of samples, the TBSI1 also permitted the recirculation of the solutions to their respective autosampler cups. The downstream diluted solution fills a home made sampling arm assembly. The sequential deposition of 20 μL aliquots of samples or standards on the graphite tube platform was carried out by air displacement with a similar time based solenoid injector (TBSI2). The dilution procedure and the injection of solutions into the atomizer are computer controlled and synchronized with the operation of the temperature program. Samples or standards solutions were submitted to two drying steps (at 90 and 130 °C), followed by pyrolysis and atomization at 700 and 1700 °C, respectively. The aqueous calibration was linear up to 120.0 μg L−1 for diluted standard solutions/samples and its slope was similar (p > 0.05) to the standard addition curve, indicating lack of matrix effect. The precision tested by repeated analysis of real saliva samples was less than 3% and the detection limit (3σ) was of 0.35 μg L−1. To test the accuracy of the proposed procedure, recovery tests were performed, obtaining mean recovery of added zinc of 97.8 ± 1.3%. Furthermore, Zn values estimated by the procedure developed in this work were compared with those obtained by a standard addition flame-AAS method applied to 20 randomly selected saliva samples. No significant differences (p > 0.05) were obtained between the two methods. Zinc levels in saliva samples from 44 healthy volunteers, 15 male and 29 female, with ages between 20 and 51 years (mean 30.50 ± 9.14 years) were in the range 22–98 μg L−1 (mean of 55 ± 17 μg L−1), similar to some and different from others reported in the literature. It was found that zinc values for male were statistically higher (p = 0.006) than for female.  相似文献   

16.
An improved protocol has been developed to isolate homovanillic acid (HVA) and vanilmandelic acid (VMA) from urine with strong anion-exchange resin. The sample is diluted with acetate buffer and passed through a disposable column. HVA, uric acid, and many hydrophobic organic acids are removed with 1.0 M acetic acid--ethanol. Then VMA is eluted with 0.5 M phosphoric acid. Two isocratic mobile phases allow rapid high-performance liquid chromatographic measurement of VMA (5 min) and HVA (8 mins) on a 5-micron ODS column. Selective conditions were developed with dual-electrode coulometric detection to permit specific measurement of VMA, HVA, and internal standards, with less than 5% between-run variation.  相似文献   

17.
基于单四极杆质谱建立了血清中尿酸、尿素含量准确测定的同位素稀释超高效液相色谱–质谱方法,并以该方法参加了国际物质量咨询委员会(CCQM)组织的"血清中尿酸尿素含量测定"的K、P国际比对。血清样品用乙腈除去蛋白质,分别采用C18反相柱和电喷雾(ESI)负离子模式检测尿酸、CN正相柱和ESI正离子模式检测尿素,同位素稀释的单点校准法进行定量,用3种标准物质(GBW 09157,GBW 09169,NIST SRM 909c)进行方法验证,测量比对血清样品(Ⅰ,Ⅱ)获得国际等效一致性。该方法操作简单、快速准确,适用于血清中尿酸尿素的定量分析。  相似文献   

18.
Hasebe Y  Nawa K  Ujita S  Uchiyama S 《The Analyst》1998,123(8):1775-1780
The principle of the signal amplification of a uric acid sensor based on dithiothreitol (DTT)-mediated intermediate regeneration of uricase was applied to a flow-injection system with an immobilized uricase reactor and a DTT-containing carrier. Highly sensitive detection for nM to microM order of uric acid was achieved when 10 mM TRIS-HCl buffer (pH 10.0) containing 20 mM DTT was used as a carrier at 0.6 ml min-1 and 37 degrees C. The sensitivity of the uric acid was much improved over a batch method using a uricase membrane-coupling electrode, and the detection limit (ca. peak current 8 nA) of uric acid was found to be down to 3 x 10(-10) M (amplification factor; more than 10,000). This chemically amplified flow-system is very useful for the direct assay of uric acid in highly diluted biological fluids (urine and serum) without complicated pretreatment of the samples, because this sensor has the potential to detect trace amounts (nM to microM) of uric acid in highly diluted body fluids in which the concentration of interfering constituents was decreased to negligible levels. Good correlation was observed between this system and conventional spectrophotometry. The immobilized uricase reactor could be re-used for at least 4 months of repeated analysis without loss of activity and was stable if stored at 4 degrees C in 10 mM TRIS-HCl buffer, pH 9.0.  相似文献   

19.
The coulometric determination of uric acid in human urine is done using porous carbon felt electrodes containing electrolyte. The diluted human urine is dropped on the carbon felt surface and uric acid is completely electrically oxidized in a few minutes. The coulombs consumed by interferences contained in human urine are determined by measuring the electrolytic oxidation of the same diluted human urine to which uricase is added. The current efficiencies of uric acid are nearly 100% (RSD < 1%). The results are in fairly good agreement with those obtained by sepectrophotometry.  相似文献   

20.
A novel chemiluminescence (CL) flow sensor for the determination of uric acid in human urine and serum has been developed by using controlled-reagent-release technology. The reagents involved in the chemiluminescence (CL) reaction, luminol and periodate, are immobilized on anion-exchange resin packed in a column. After injection of water, chemiluminescence generated by released luminol and periodate in alkaline media is inhibited in presence of uric acid. By measuring the decreased chemiluminescence (CL) intensity the uric acid is sensed. The decreased response is linear in the 5.0-500.0 ng mL(-1) range, with a detection limit of 1.8 ng mL(-1). The flow sensor showed remarkable operational stability and could be easily reused for over 80 h with sampling frequency of 100 h(-1). The proposed sensor was applied to the determination of uric acid in human urine and serum, and monitoring metabolic uric acid in human urine with RSD less than 3.0%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号