首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 203 毫秒
1.
甲醇电氧化催化剂Pt/CeO2-CNTs与PtRu/C的比较研究   总被引:1,自引:0,他引:1  
为认识合成催化剂Pt/CeO2-CNTs与商用催化剂PtRu/C(E-TEK)的催化性能和结构特点, 用CO溶出法和恒电位氧化法比较了这两种催化剂对CO的电氧化活性, 运用循环伏安法和恒电位氧化法比较了这两种催化剂对甲醇的电氧化活性. CO电氧化实验结果表明, PtRu/C上CO的电氧化活性明显优于Pt/CeO2-CNTs; 甲醇电氧化实验结果却表明, Pt/CeO2-CNTs与PtRu/C上甲醇电氧化表观活性相当. 为从结构特点上解释PtRu/C上CO电氧化和甲醇电氧化活性的不一致, 对PtRu/C进行了循环伏安扫描和CO溶出实验. 结果表明, PtRu/C的甲醇电氧化电流之所以没有预期高, 一是由于Pt比表面积不够大, 同时Pt-Ru之间协同作用有待提高. 本研究结果表明, 尽管Ru对Pt上CO电氧化有显著助催化作用, 但要充分发挥其对Pt上甲醇电氧化的助催化作用, 需同时提高Pt表面积和Pt-Ru接触界面. 该结论对设计甲醇电氧化催化剂具有普适意义.  相似文献   

2.
采用两步浸渍-还原法制备了一种具有高Pt利用效率,高性能的Pt修饰的Ru/C催化剂(Ru@Pt/C).对于甲醇的阳极氧化反应,该催化剂的单位质量铂的催化活性分别为Pt/C、自制PtRu/C和商业JMPtRu/C催化剂的1.9、1.5和1.4倍;其电化学活性比表面积分别为Pt/C和自制PtRu/C的1.6和1.3倍.尤为重要的是该催化剂对甲醇氧化中间体具有很好的去除能力,其正向扫描的氧化峰的峰电流密度(If)与反向扫描氧化峰的峰电流密度(Ib)之比可高达2.4,为Pt/C催化剂的If/Ib的2.7倍,表明催化剂具有很好的抗甲醇氧化中间体毒化的能力.另外,Ru@Pt/C催化剂的稳定性也高于Pt/C、自制PtRu/C和商业JMPtRu/C催化剂的稳定性.采用X射线衍射(XRD)、透射电镜(TEM)和X射线光电子能谱(XPS)对催化剂进行了表征,Pt在Ru表面的包覆结构得到了印证.Ru@Pt/C的高铂利用效率、高性能和高抗毒能力使其有望成为一种理想的直接甲醇燃料电池电催化剂.  相似文献   

3.
分别采用高压有机溶剂法和回流法不同的制备方法,制备了含铂20%(w)的催化剂Pt/C-HP(高压有机溶剂法)和Pt/C-Reflux(回流法)。实验发现:对于甲醇的阳极氧化过程,高压有机溶胶法制得的催化剂活性较高,催化剂Pt/C-HP甲醇氧化峰电流密度是Pt/C-Reflux的1.5倍,且远远高于商业催化剂JM3000含铂20%(w)Pt/C催化剂,催化剂Pt/C-Reflux甲醇氧化峰电流密度与商业催化剂JM3000催化剂相当。采用X射线衍射(XRD)、透射电镜(TEM)、循环伏安法(CV)等方法对催化剂进行表征的结果表明:高压有机溶胶法制得的催化剂分散性比回流法制得的催化剂好,使得前者催化剂的电化学活性比表面积得到了显著的提高。  相似文献   

4.
以多壁碳纳米管(MWCNTs)为载体,制备了Pt载量为20%的Pt-(RuOxHy)m/MWCNTs催化剂(m为Ru/Pt原子比),在m≤0.4时考察了不同电势区间循环伏安预处理对其催化性能的影响.水合氧化钌(RuOxHy)的存在明显提高了Pt催化剂抗CO毒化的能力,而在甲醇电氧化反应中Pt的质量比活性(MSA)随样品中m值增大呈先升后降趋势.经低电势区间(-0.20~0.46 V vsSCE)预处理稳定的催化剂中,Pt-(RuOxHy)0.10/MWCNTs样品中Pt的甲醇电氧化反应的MSA提高至相应单组分Pt/MWCNTs的9倍.将预处理电势区间扩展到高电势(即-0.20~0.96 V VS SCE)会造成钌组分溶解流失,导致催化剂抗CO毒化能力下降.在经过高电势区间的预处理后,Pt-(RuOxHy)0.20/MWCNTs对甲醇电氧化反应呈现出最高的催化活性,为单组分Pt催化剂的1.4倍.这些结果证实,水合氧化钌是Pt电催化剂的有效助剂.  相似文献   

5.
碳纳米管结构对碳纳米管载Pt催化剂电催化性能的影响   总被引:1,自引:0,他引:1  
在制备单、双壁及不同管径的多壁碳纳米管(CNTs)的基础上, 用液相还原法把Pt沉积到单、双壁和管径不同的多壁CNTs上. 发现制得的CNTs载Pt(Pt/CNTs)催化剂对甲醇氧化的电催化活性随CNTs管径减小而增加. 这归结于管径小的CNTs的比表面积较大, 含氧基团多, 有利于提高Pt粒子分散度, 加上管径小的单壁CNTs具有更高的导电性, 这些因素都有利于提高Pt/CNTs催化剂对甲醇氧化的电催化活性.  相似文献   

6.
采用两步沉积还原法制备了一种以PdRu合金为核、以铂为壳,以碳纳米管(CNT)为载体的核壳结构低铂催化剂PdRu@Pt/CNT.该催化剂对于甲醇催化氧化的单位位质量铂的活性可达自制20%Pt/CNT催化剂的1.7倍,且其正扫和反扫峰的峰电流密度之比(/_f//_b)高达2,是Pt/CNT催化剂/_f//_b值的2倍,表明通过将活性组分铂分散在PdRu核上,有效地提高了金属铂的分散度和铂的利用率,且通过壳层铂原子与核中钌及钯的相互作用,大大提高了催化剂对甲醇氧化中间体的去除能力.X射线衍射(XRD)和透射电子显微镜(TEM)的结果揭示了催化剂的核壳结构.另外,从TEM还可以看出:活性组分均匀地分布在碳纳米管载体上,活性组分粒径约为4.0 nm.由于这种催化剂能够有效提高铂的利用效率,并且有效消除甲醇氧化中间体,在低温燃料电池领域具有良好的应用前景.  相似文献   

7.
热处理对甲醇电氧化催化剂PtRu/C性能的影响   总被引:1,自引:1,他引:0  
采用非离子表面活性剂Triton X-100作为稳定剂制备了催化甲醇电氧化反应的PtRu/C催化剂, 研究了热处理温度对催化剂的组成、结构、形貌和活性的影响. 利用循环伏安法研究了PtRu/C催化剂催化甲醇电氧化的活性, 用热重和差热分析(TG-DTA)、X射线能量色散谱(EDX)、X射线衍射(XRD)、X射线光电子能谱(XPS)和透射电子显微镜(TEM)对PtRu/C催化剂进行了表征. 研究结果表明, 热处理对PtRu/C催化剂粒子的大小、分布和Pt的氧化态有重要的作用. 在350 ℃下热处理的催化剂显示了最好的催化甲醇电氧化的性能, 由Triton X-100作为稳定剂制备的PtRu/C催化剂最适宜的热处理温度是350 ℃.  相似文献   

8.
制备了一种新的甲醇直接燃料电池Pt/RuO2/CNTs阳极催化剂,在相同Pt负载量下,其甲醇电催化氧化活性是Pt/CNTs的3倍.采用循环伏安法研究发现Pt/RuO2/CNTs纳米催化剂中RuO2含量对甲醇电催化氧化活性有明显影响,当Pt和RuO2在碳纳米管上含量分别为15%和9.5%时,Pt/RuO2/CNTs催化剂具有最佳的甲醇电催化氧化活性.RuO2负载在碳纳米管上比电容的变化,反映了水合RuO2结构中质子与电子传输平衡的能力,分析表明,催化剂中RuO2含量不同导致电容的变化是影响甲醇电催化氧化活性的主要原因.当催化剂结构中质子与电子传输达到平衡时,催化剂比电容最大,电催化氧化活性最高.这种基于电容关联电催化剂的观点对甲醇直接燃料电池阳极催化剂的设计非常有意义.  相似文献   

9.
采用调变的多元醇法制备了高分散的Pt/C, PtRu/C和Ru/C电催化剂. XRD计算结果表明, PtRu/C电催化剂的平均粒径和合金度分别为2.2 nm和71%. 采用电化学方法和原位傅里叶变换红外反射光谱方法(in situ FTIRS)研究了甲醇在3种电催化剂上的吸附氧化过程, 发现PtRu/C对甲醇的催化活性明显高于Pt/C, Ru的加入一方面影响了甲醇在Pt上的解离吸附性能, 另一方面提供了Ru-OH物种, 从而抑制了低电位下电催化剂中毒. 红外光谱研究结果表明, 线性吸附态CO(COL)是主要毒化物种, 反应产物主要是CO2, 还有少量的甲酸甲酯. 根据实验结果讨论了甲醇在PtRu/C电催化剂上的氧化机理.  相似文献   

10.
碳载Pt和PtRu催化剂的甲醇电氧化比较   总被引:3,自引:0,他引:3  
利用电化学方法对商用Pt/C和PtRu/C催化剂在酸性介质中的甲醇电氧化进行了比较研究.动电位和恒电位氧化实验结果皆表明PtRu/C比Pt/C对甲醇电催化活性高.PtRu合金的形成不仅改变了催化剂表面对氢的吸附性质,而且使氧化物还原峰电位向阴极方向移动.Ru与甲醇的相互作用为温度活化过程,需要较高的温度.  相似文献   

11.
Platinum/ruthenium nanoparticles were decorated on carbon nanotubes (CNT) in supercritical carbon dioxide, and the nanocomposites were characterized by transmission electron microscopy (TEM) and X-ray diffraction (XRD). TEM images show that the particles size is in the range of 5-10 nm, and XRD patterns show a face-centered cubic crystal structure. Methanol electrooxidation in 1 M sulfuric acid electrolyte containing 2 M methanol were studied onPtRu/CNT (Pt, 4.1 wt%; Ru, 2.3 wt%; molar ratio approximately Pt/Ru = 45:55) catalysts using cyclic voltammetry, linear sweep voltammetry, chronoamperometry, and electrochemical impedance spectroscopy. All the electrochemical results show that PtRu/CNT catalysts exhibit high activity for methanol oxidation which resulted from the high surface area of carbon nanotubes and the nanostructure of platinum/ruthenium particles. Compared with Pt/CNT, the onset potential is much lower and the ratio of forward anodic peak current to reverse anodic peak current is much higher for methanol oxidation, which indicates the higher catalytic activity of PtRu/CNT. The presence of Ru with Pt accelerates the rate of methanol oxidation. The results demonstrated the feasibility of processing bimetallic catalysts in supercritical carbon dioxide for fuel cell applications.  相似文献   

12.
Platinum and ruthenium nanoparticles that are uniformly dispersed on multiwalled carbon nanotubes (MWNTs) were synthesized by vacuum pyrolysis using Pt(acac)2 and Ru(acac)3 as the metal precursors. The resulting nanocomposites were characterized by transmission electron microscopy and X-ray diffraction. The Pt, Pt45Ru55, and Ru nanoparticles had mean diameters of 3.0 +/- 0.6, 2.7 +/- 0.6, and 2.5 +/- 0.4 nm and the same mole number as their metal precursors at 500 degrees C. The electrocatalytic activity of the Pt/MWNTs and PtRu/MWNTs was investigated at room temperature by cyclic voltammetry and chronoamperometry. All of the electrochemical results showed that the PtRu/MWNTs exhibited a high level of catalytic activity for methanol oxidation as a result of the large surface area of the supporting carbon nanotubes and the wide dispersion of the Pt and Ru nanoparticles. Compared with the Pt/MWNTs, the onset potential for methanol oxidation of the PtRu/MWNTs was significantly lower, and the ratio of the forward anodic peak current to the reverse anodic peak current during methanol oxidation was somewhat higher. The Pt45Ru55/MWNTs displayed the best electrocatalytic activity of all of the carbon-nanotube-supported Pt and PtRu catalysts.  相似文献   

13.
We have fabricated three-dimensional (3D) nanostructured carbon nanotube (CNT) array/PtRu nanoparticle (with the average molar percentage (26%) of Ru) electrodes using anodic aluminum oxide (AAO) templates for micro-fuel cells. 3D nanostructured CNT array was used to support PtRu nanoparticles to enhance the utilization efficiency of Pt. The 3D nanostructured CNT array/PtRu electrodes show the excellent catalytic activity and electrochemical stability of electro-oxidation of methanol. Their anodic current density is 10 times as high as that of PtRu thin-films, which could be explained in terms of the high specific surface area of 3D nanostructured CNT array supporting films and the uniform distribution of PtRu nanoparticles.  相似文献   

14.
Conducting polymer composite films comprised of polypyrrole (PPy) and multiwalled carbon nanotubes (MWCNTs) [PPy–CNT] were synthesized by in situ polymerization of pyrrole on carbon nanotubes in 0.1 M HCl containing (NH4)S2O8 as oxidizing agent over a temperature range of 0–5 °C. Pt nanoparticles are deposited on PPy–CNT composite films by chemical reduction of H2PtCl6 using HCHO as reducing agent at pH = 11 [Pt/PPy–CNT]. The presence of MWCNTs leads to higher activity, which might be due to the increase of electrochemically accessible surface areas, electronic conductivity and easier charge-transfer at polymer/electrolyte interfaces allowing higher dispersion and utilization of the deposited Pt nanoparticles. A comparative investigation was carried out using Pt–Ru nanoparticles decorated PPy–CNT composites. Cyclic voltammetry demonstrated that the synthesized Pt–Ru/PPy–CNT catalysts exhibited higher catalytic activity for methanol oxidation than Pt/PPy–CNT catalyst. Such kinds of Pt and Pt–Ru particles deposited on PPy–CNT composite polymer films exhibit excellent catalytic activity and stability towards methanol oxidation, which indicates that the composite films is more promising support material for fuel cell applications.  相似文献   

15.
The characteristics of low-temperature hydrogen–oxygen (air) fuel cell (FC) with cathodes based on the 50 wt % PtCoCr/C and 40 wt % Pt/CNT catalysts synthesized on XC72 carbon black and carbon nanotubes (CNT) are compared with the characteristics of commercial monoplatinum systems 9100 60 wt % Pt/C and 13100 70% Pt/C HiSPEC. It is shown that the synthesized catalysts exhibit a high mass activity, which is not lower than that of commercial Pt/C catalysts, a high selectivity with respect to the oxygen reduction to water, and a significantly higher stability. The characteristics of PtCoCr/C and Pt/CNT were confirmed by testing in the hydrogen—oxygen FCs. However, when air was used at the cathode, especially in the absence of excessive pressure, a voltage of FC with the cathode based on PtCoCr/XC72 is lower as compared with the commercial systems. Probably, this is associated with the transport limitations in the structure of trimetallic catalyst synthesized on XC72 carbon black due to the absence of mesopores. This drawback was eliminated to a large extent by raising the volume of mesopores as a result of application of mixed support (XC72 + CNT) and the use of only CNT for the synthesis of the monoplatinum catalyst. However, this did not eliminate another drawback, namely, a low platinum utilization coefficient in the cathode active layer as compared with that measured under the model conditions in the 0.5 M Н2SO4 solution. Therefore, further research is required to improve the structure of the catalytic systems, which are synthesized both on carbon black and nanotubes, while maintaining their high stability and selectivity.  相似文献   

16.
PtRu nanoparticles supported on Vulcan XC-72 carbon and carbon nanotubes were prepared by a microwave-assisted polyol process. The catalysts were characterized by transmission electron microscopy, X-ray diffraction, and X-ray photoelectron spectroscopy (XPS). The PtRu nanoparticles, which were uniformly dispersed on carbon, were 2-6 nm in diameter. All PtRu/C catalysts prepared as such displayed the characteristic diffraction peaks of a Pt face-centered cubic structure, excepting that the 2theta values were shifted to slightly higher values. XPS analysis revealed that the catalysts contained mostly Pt(0) and Ru(0), with traces of Pt(II), Pt(IV), and Ru(IV). The electro-oxidation of methanol was studied by cyclic voltammetry, linear sweep voltammetry, and chronoamperometry. It was found that both PtRu/C catalysts had high and more durable electrocatalytic activities for methanol oxidation than a comparative Pt/C catalyst. Preliminary data from a direct methanol fuel cell single stack test cell using the Vulcan-carbon-supported PtRu alloy as the anode catalyst showed high power density.  相似文献   

17.
The ability to alter the surface population of metal sites in bimetallic nanoparticles (NPs) is of great interest in the context of heterogeneous catalysis. Here, we report findings of surface alterations of Pt and Ru metallic sites in bimetallic carbon-supported (PtRu/C) NPs that were induced by employing a controlled thermal-treatment strategy. The thermal-treatment procedure was designed in such a way that the particle size of the initial NPs was not altered and only the surface population of Pt and Ru was changed, thus allowing us to deduce structural information independent of particle-size effects. X-ray absorption spectroscopy (XAS) was utilized to deduce the structural parameters that can provide information on atomic distribution and/or extent of alloying as well as the surface population of Pt and Ru in PtRu/C NPs. The PtRu/C catalyst sample was obtained from Johnson Matthey, and first the as-received catalyst was reduced in 2 % H2 and 98 % Ar gas mixture at 300 degrees C for 4 h (PtRu/C as-reduced). Later this sample was subjected to thermal treatment in either oxygen (PtRu/C-O2-300) or hydrogen (PtRu/C-H2-350). The XAS results reveal that when the as-reduced PtRu/C catalyst was exposed to the O2 thermal-treatment strategy, a considerable amount of Ru was moved to the catalyst surface. In contrast, the H2 thermal-treatment strategy led to a higher population of Pt on the PtRu/C surface. Characterization of the heat-treated PtRu/C samples by X-ray diffraction and transmission electron microscopy reveals that there is no significant change in the particle size of thermally treated samples when compared to the as-received PtRu/C sample. The electrochemical properties of the as-reduced and heat-treated PtRu/C catalyst samples were confirmed by cyclic voltammetry, CO-adsorption stripping voltammetry, and linear sweep voltammetry. Both XAS and electrochemical investigations concluded that the PtRu/C-H2-350 sample exhibits significant enhancement in reactivity toward methanol oxidation as a result of the increased surface population of the Pt when compared to the PtRu/C-O2-300 and PtRu/C as-reduced samples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号