首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Two-dimensional micropatterns of microparticles were fabricated on glass substrates with negative dielectrophoretic force, and the patterned microparticles were covalently bound on the substrate via cross-linking agents. The line and grid patterns of microparticles were prepared using the repulsive force of negative dielectrophoresis (n-DEP). The template interdigitated microband array (IDA) electrodes (width and gap 50 mum) were incorporated into the dielectrophoretic patterning cell with a fluidic channel. The microstructures on the glass substrates with amino or sulfhydryl groups were immobilized with the cross-linking agents disuccinimidyl suberate (DSS) and m-maleimidobenzoyl-N-hydroxy-succinimide ester (MBS). Diaphorase (Dp), a flavoenzyme, was selectively attached on the patterned microparticles using the maleimide groups of MBS. The enzyme activity on the patterned particles was electrochemically characterized with a scanning electrochemical microscope (SECM) in the presence of NADH and ferrocenylmethanol as a redox mediator. The SECM images proved that Dp was selectively immobilized onto the surface of microparticles to maintain its catalytic activity.  相似文献   

2.
The possibility of constructing an interdigitated array electrode (IDA) with a submicrometre gap is proposed in which adjacent microband electrodes are separated from each other by an insulated step. Then the IDA is an assembly of protrusive and hollow microband electrodes. The unit model of the IDA consisted of half of the lower (hollow) microband electrode, an insulated step and half of the upper (protrusive) microband electrode with a finite thickness on the step. The boundary value problem involving the two-dimensional Laplace equation is presented for redox cycling at the IDA under diffusion control and is solved numerically by a boundary element method. The steady-state current was computed as a function of the height of the step and the thickness of the upper electrode. It was larger than the current at the ordinary IDA, partly because the true electrode area was larger than the area of the ordinary IDA. The current varied linearly with the logarithm of the step height. It was expressed by a simple approximate equation in order to facilitate prediction of its numerical value.  相似文献   

3.
4.
For electrorheological (ER) suspensions, the aggregate structures of particles were observed in electric fields by the use of transparent cells with different electrode patterns. Although the suspension is dispersed to noninteracting particles without electric fields, many aggregates are formed on the electrode surface in electric fields. Since the dipole–dipole interactions cause chain structures of particles and equilibrium conformations of chains are always aligned with electric field, the aggregates indicate the presence of columns spanning the electrode gap. The particle concentration in columns which are developed between parallel-plate electrodes is about 22 vol %. In striped electrodes, the particles construct striped aggregates along the electrodes and no particles remain in the insulating region. The particle concentration in striped aggregates is about 35 vol %. The nonuniformity of electric field is responsible for the high particle concentration. The increase in particle concentration of column lead to the high yield stress of electrified suspension. Therefore, the ER performance of suspension as an overall response can be improved by the electrode design.  相似文献   

5.
Cheng W  Li SZ  Zeng Q  Yu XL  Wang Y  Chan HL  Liu W  Guo SS  Zhao XZ 《Electrophoresis》2011,32(23):3371-3377
We present a feasible dielectrophoresis (DEP) approach for rapid patterning of microparticles on a reusable double-layer electrode substrate in microfluidics. Simulation analysis demonstrated that the DEP force was dramatically enhanced by the induced electric field on top interdigitated electrodes. By adjusting electric field intensity through the bottom electrodes on thin glass substrate (100 μm), polystyrene particles (10 μm) were effectively patterned by top electrodes within several seconds (<5 s). The particle average velocity can reach a maximum value of about 20.0±3.0 μm/s at 1 MHz with the strongest DEP force of 1.68 pN. This approach implements integration of functional electrodes into one substrate and avoids direct electrical connection to biological objects, providing a potential lab-on-chip system for biological applications.  相似文献   

6.
Flow electrification in nonaqueous suspensions has been scarcely reported in the literature but can significantly affect colloidal stability and (phase) behavior, perhaps even without being recognized. We have observed it in shear flow experiments on concentrated binary suspensions of hydrophobized silica particles in chloroform. In this low-polarity solvent, electrical charges on the large-particles' surfaces manifest themselves via long-ranged forces, because hardly any screening can take place through counterions. By shearing the suspension for a prolonged time, we could demonstrate that the effective interactions between the large particles change from weakly attractive (due to the small particles) to strongly repulsive (due to acquired Coulomb interactions). One of the conditions required for flow electrification was the presence of a glass surface in the shear cell. A spectacular manifestation of the phenomenon was observed with confocal video microscopy. First, the formation of large-particle aggregates was seen, while subsequently (over a long shearing time) the aggregates disintegrated into small entities, mostly primary particles. The spatial distribution of these entities in the quiescent state after stopping the flow showed evidence for acquired long-range repulsion. The occurrence of flow electrification was further corroborated by control experiments, where no flow was imposed, antistatic agent was added, or the glass bottom was coated with a conducting (indium tin oxide, ITO) layer: here, the aggregates kept growing until they became very large. To further diagnose the phenomenon, we have also done experiments in which an external electric field was applied (via the ITO layer) to an aggregated suspension. When the lower electrode was given the lowest potential, the aggregates were found to move away from the bottom and disintegrate. The qualitative similarity hereof with the flow electrification experiment suggests that in the latter, the glass acquired negative charges. After prolonged application of an external electric field, we observed segregation into regions enriched in large particles and regions completely depleted of them. In the quiescent fluid these regions exist as isolated units, but in shear flow they merge into bands, a behavior which resembles shear banding.  相似文献   

7.
研制一种基于金叉指微电极阵列(IDA)的电流型硝酸根离子(NO-3)微传感电极芯片.基于微机电系统(Micro-Electro-Mechanical Systems,MEMS)工艺制备金IDA微电极,通过电化学沉积技术在IDA微电极表面修饰三维枝状结构纳米银敏感膜,利用敏感膜对硝酸根离子良好的电催化还原性能,采用脉冲方波伏安(SWV)电化学测量方法,实现对硝酸根离子在25~1000μmol/L浓度范围内的快速检测,灵敏度达9.5 nA/(μmol/L),线性度为99.98%,检测下限为10μmol/L.考察水体中常见的NO-2,F-,3PO 4-,SO 42-,2CO3-,NH+4,Na+和K+等离子对该传感芯片的干扰性能,传感芯片表现出较好的抗干扰性能.制备的三维枝状结构纳米银修饰IDA微电极可实现水环境(pH 5.0~9.0)中NO-3的电化学检测,对应用于自然水环境中硝酸根离子的现场检测具有积极意义.  相似文献   

8.
A single-cell-gap transflective liquid crystal display with a vertically aligned cell using square ring electrode is demonstrated. The top substrate has a top planar common electrode, a square ring pixel electrode is coated on the bottom substrate, while a bumpy reflector is coated under the bottom substrate. In this device, the planar common electrode and square ring pixel electrode generate a strong longitudinal electric field in the transmissive region (T region) and a weak fringe field in the reflective region (R region). As result, the T and R regions accumulate the same optical phase retardation. The simulation results show that the display exhibits reasonably low operating voltage, high transmittance and well-matched voltage-dependent transmittance and reflectance curves. Besides, fabrication process of the transflective liquid crystal display is very simple.  相似文献   

9.
Vertically aligned BiVO4 nanowall films on indium tin oxide (ITO) glass have been fabricated through a template‐free hydrothermal method for the first time. Based on the structural understanding of both BiVO4 and ITO, the lattice matches ({020}BiVO4 and {040}ITO, {200}BiVO4 and {004}ITO, respectively) and the similarity of metal atomic arrangement parallel to {001} planes turn out to be crucial for the fabrication of the nanowalls. Consequently, the growth of a BiVO4 film begins from heteroepitaxy and undergoes an Ostwald ripening process to form an extended network, resulting in a c‐orientation and exposing {010} facets. Through this process, it is much easier to obtain a range of nanowall films with different packing densities, as the surface state of ITO glass is alterable by adjusting the concentration of acid. The films can be directly used as an electrode, which exhibits an excellent response to visible light, especially light with low intensity, allowing for the electrical interconnection, highly active surface, appropriate orientation, and a good contact with the substrate. There are great benefits in improving the technique for detecting the weak light source signals.  相似文献   

10.
We report an electrohydrodynamic effect arising from the application of alternating electric fields to patterned electrode surfaces. The AC fields were applied to dilute suspensions of latex microspheres enclosed between a patterned silicon wafer and an ITO-coated glass slide in a small chamber. The latex particles became collected in the center of the conductive "corrals" on the silicon wafer acting as bottom electrode. The particle collection efficiency and speed depended only on the frequency and strength of the field and were independent of the material properties of the particles or the electrodes. The leading effect in the particle collection process is AC electrohydrodynamics. We discuss how the electrohydrodynamic flows emerge from the spatially nonuniform field and interpret the experimental results by means of electrostatic and hydrodynamic simulations. The technique allows three-dimensional microfluidic pumping and transport by the use of two-dimensional patterns. We demonstrate on-chip collection of latex particles, yeast cells, and microbes.  相似文献   

11.
基于微带阵列电极的微型葡萄糖传感器研究   总被引:3,自引:0,他引:3  
贾能勤 《电化学》1999,5(2):179-185
用微电子薄膜技术制作了微带阵列电极(MAE),考察了该电极在铁氰化钾,过氧化氢溶液中的电化学行为。在微带阵列电极表面,修饰一层全氟代磺酸酯膜作为基底电极,并把电子介体二茂铁及葡萄糖氧化酶固定在基底电极上制备了微型葡萄糖传感器,探讨了微酶电极对葡萄糖氧化过程的催化作用。该微酶电极响应时间小于10s,检测线性上限为8mmol/L。  相似文献   

12.
Lateral quantized charge transfer was observed with gold nanoparticle monolayers at the air/water interface. The electronic conductivity was measured by using an interdigitated arrays (IDA) electrode perpendicularly aligned at the air/water interface where a particle ensemble was trapped between the IDA fingers. The overall voltammetric responses were analogous to that of the Coulomb blockade with a relatively flat central gap. This gap was found to shrink with increasing surface pressure. Differential pulse voltammetry revealed a series of well-defined voltammetric peaks within this central gap, which are ascribed to the single electron transfer of the particle ensemble. This observation was interpreted on the basis of relatively weak electronic coupling between neighboring particles where the particles behave more individually.  相似文献   

13.
基于二氧化硅球腔微电极阵列的过氧化氢生物传感器制备   总被引:1,自引:0,他引:1  
周丽娟  尹凡  周宇 《分析化学》2011,(9):1313-1317
以聚苯乙烯(PS)微球阵列为模板,采用溶胶-凝胶法在氧化铟锡( ITO)电极上制备了二氧化硅(SiO2)球腔阵列,扫描电镜显示此方法制备的SiO2球腔阵列高度有序.电化学研究结果表明,该球腔阵列的循环伏安曲线符合微电极阵列的电化学特点.将血红蛋白(Hb)作为氧化还原模型蛋白直接吸附于球腔内,制得电流型过氧化氢(H2O2...  相似文献   

14.
超微电极具有常规电极无法比拟的优良的电化学特性.超微电极包括单超微电极和超微电极阵列,单超微电极响应电流较小,一般仪器难以检测;而超微电极阵列除具有单超微电极的特点外,还能增加测量时的响应电流,有利于仪器检测.其中的叉指型超微带电极阵列(IDA)具有产生-收集效应,可提高检测的灵敏度,实现低浓度测量[1~4].将微电子技术和微细加工技术应用于化学和生物传感技术已引起关注,利用微细加工技术可以实现传感器的微型化、集成化和智能化;减少测量使用的样品量;使传感器的敏感元件具有确定的形状和尺寸,提高测量结果的一致性.本文用多…  相似文献   

15.
《Liquid crystals》2012,39(12):1790-1798
ABSTRACT

A simple transflective liquid crystal display with a vertically aligned cell using a composite dielectric layer is demonstrated. The top substrate has a top planar common electrode, two transparent dielectric layers with different dielectric constants are coated on the bottom planar pixel electrode to generate linearly varying electric potential from the transmissive region (T region) to the reflective region (R region), while two bumpy reflectors are coated under the bottom substrate. In this device, with the composite dielectric layer, the common and pixel electrodes generate a strong electric potential in the T region and a relatively weak electric potential in the R region. Consequently, the T and R regions accumulate the same electro-optical characteristics. The simulation results show that the display exhibits reasonably low operating voltage, high optical efficiency and well-matched voltage-dependent transmittance (VT) and reflectance (VR) curves. Besides, the driving mode and the fabrication process of the transflective liquid crystal display are fairly simple and it is suitable for mobile applications.  相似文献   

16.
氮化碳(graphitic carbon nitride,g-CN)作为一种非金属半导体材料已被广泛应用于多种能源相关领域研究中。目前由于制备高质量g-CN薄膜的困难,大大限制了其在实际器件上的应用。本文中,我们报道了一种可制备高光学质量gCN薄膜的方法:即由三聚氰胺先通过热聚合制备本体g-CN粉末,再由本体g-CN粉末经过气相沉积在ITO导电玻璃或钠钙玻璃基底上制备g-CN薄膜。扫描电子显微镜和原子力显微镜的测量结果表明在ITO玻璃基底上形成的g-CN薄膜形貌结构均一且致密,厚度约为300nm。扫描电镜能量色散能谱和X射线光电子能谱测量结果表明在ITO玻璃基底上制备的g-CN薄膜的化学组成与本体g-CN粉末的化学组成基本一致。同时,我们发现制备的g-CN薄膜和本体g-CN粉末一样在光照射下可以有效降解亚甲基蓝染料。此外,我们还测量了制备的g-CN薄膜的稳态吸收光谱、稳态荧光光谱、荧光寿命和价带谱,并运用吸收光谱和价带谱数据确定了其能带结构。  相似文献   

17.
We demonstrate here the use of nonuniform alternating current (AC) electric fields, generated by planar electrodes, for the organization of num-sized particles into one-, two-, and three-dimensional assemblies. The electrodes, with separations that vary from 35 to 300 num, are made of gold deposited on glass substrata. Latex, silica and graphite particles have been examined inside organic or aqueous media in order to illustrate the general applicability of the technique. Theoretical predictions of the particle response under the electric fields are experimentally confirmed for all the above particle/media combinations and can thus be used as a valuable design tool. The size and shape of the final structures are mainly dependent on the electrode shape and dimensions, but are also subject to the particle type and operating conditions. Particle organization in one dimension (strings) is achieved under conditions of positive or negative dielectrophoresis in the space between two energized electrodes. Two-dimensional particle organization (ordered, planar particles assemblies) was observed under conditions of negative dielectrophoresis, when quadrupole electrodes were employed. Moreover, when negative dielectrophoresis and stronger electric fields are applied (of the order of 50 kV(rms) m(-1)), three-dimensional, pyramid-like structures with a vertical dimension 1000-fold higher than that of the corresponding (planar) electrodes can be assembled. These 3-D structures can grow as free-standing assemblies, or inside templates etched in the substratum. The dielectrophoresis (DEP)-organized particle assemblies can subsequently be rendered permanent via the in situ fixing (cross-linking) of the individual particles.  相似文献   

18.
In this work, carbon nanotubes (CNTs) nanoarrays in anodized aluminum oxide (AAO-CNTs) nanopore is integrated on a microfluidic flow injection system for in-channel electrochemical detection of iodide. The device was fabricated from PDMS (polydimethylsiloxane) microchannel bonded on glass substrates that contains three-electrode electrochemical system, including AAO-CNTs as a working electrode, silver as a reference electrode and platinum as an auxiliary electrode. Aluminum, stainless steel catalyst, silver and platinum layers were sputtered on the glass substrate through shadow masks. Aluminum layer was then anodized by two-step anodization process to form nanopore template. CNTs were then grown in AAO template by thermal chemical vapor deposition. The amperometric detection of iodide was performed in 500-μm-wide and 100-μm-deep microchannels on the microfluidic chip. The influences of flow rate, injection volume and detection potential on the current response were optimized. From experimental results, AAO-CNTs electrode on chip offers higher sensitivity and wider dynamic range than CNTs electrode with no AAO template.  相似文献   

19.
We demonstrate micromechanical strain sensors with integrated readout based on carbon nanocones and discs (CNCs) which are aligned into a string‐like formation using an alternating electric field and studied by AC impedance spectroscopy and electromechanical methods. The CNC particles are first dispersed into a polymer matrix with a particle fraction of 0.1 vol %. This value is well below the percolation threshold (~ 2 vol %), which suppresses particle aggregation and facilitates transparency allowing the use of an UV‐curable polymer. Alignment was carried out with a 1 kHz, 4 kV/cm electric field and is a consequence of dielectrophoretic effect. It develops in minutes and makes the initially insulating, nonaligned material conductive. This is followed by UV curing of the polymer matrix, which renders a solid state device. The stretching of the aligned strings in the cured polymer leads to a reversible piezoresistive effect, and a gauge factor of about 50 is observed. This is in a sharp contrast to CNC films with particle fraction above percolation threshold (13 vol %), which are conductive but not sensitive to stretching. The strings are Ohmic in nature and moreover show higher DC conductivity (22–500 S/m) compared to identically prepared carbon black strings (1–22 S/m). © 2011 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys, 2011  相似文献   

20.
《Electroanalysis》2018,30(8):1616-1620
This paper describes a simple, convenient approach to the fabrication of microband electrodes and microband biosensors based on screen printing technology. These devices were printed in a three‐electrode configuration on one strip; a silver/silver chloride electrode and carbon counter electrode served as reference and counter electrodes respectively. The working electrodes were fabricated by screen‐printing a water‐based carbon ink containing cobalt phthalocyanine for hydrogen peroxide detection. These were converted into a glucose microband biosensor by the addition of glucose oxidase into the carbon ink. In this paper, we discuss the fabrication and application of glucose microband electrodes for the determination of glucose in cell media. The dimensions (100–400 microns) of the microband electrodes result in radial diffusion, which results in steady state responses in the absence of stirring. The microband biosensors were investigated in cell media containing different concentrations of glucose using chronoamperometry. The device shows linearity for glucose determination in the range 0.5 mM to 2.5 mM in cell media. The screen‐printed microband biosensor design holds promise as a generic platform for future applications in cell toxicity studies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号