首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
采用泡沫浮选-固相提取联用法,分离富集三七中的R1,Rg1,Re,Rc,Rb2,Rb3,Rd和Rb1,并用液相色谱法测定其含量,检测灵敏度和选择性都有所提高.对泡沫浮选过程的载气流量、浮选时间、样品溶液pH值和固相提取柱的洗脱条件进行了优化.原人参二醉型皂苷R1,Rc,Rb2,Rb3,Rd和Rb1的回收率在85.0%9...  相似文献   

2.
Ginsenosides Rgl, Re, Rb1, Rc, Rb2, Rb3, and Rd in different parts of the American ginseng plant were investigated. The extraction process was a pressurized microwave-assisted extraction(PMAE). The seven ginsenosides were separated and determined by high-performance liquid chromatography(HPLC) with a ultraviolet(UV) detector, at 203 nm. The experiment results showed significant variations in the individual ginsenoside contents of the American ginseng in different parts and ages of the plant. The results demonstrated that the leaves, root hairs, and rhizomes of Panax quinquefolius L. contained higher ginsenoside contents, followed by the main roots and stems. The leaves contained dramatically higher levels of ginsenoside Rg1 Rb3, and Rd than the other four parts. Higher contents of Rb1 and Re were present in the main roots, root hairs, and rhizomes. The amount of ginsenoside content in the stems was the lowest. The total content of the seven ginsenosides in main roots, root hairs and rhizomes increased with the age of the plant. In contrast, the ginsenoside contents in the leaves and stems decreased with a year of growth.  相似文献   

3.
In traditional Chinese medicine theory, Panax ginseng and Veratrum nigrum L. is an important incompatible herb pair. Studies on the content variation of main components and the influences on the metabolism in rat intestinal bacteria are useful to understand the mechanism of incompatibility of this herb pairs. In this study, the content variation of ginsenosides and their metaboltic profiles in the extracts of P. ginseng and compatibility of P. ginseng with V. nigrum L. (G‐V) were investigated using relative quantitative method of electrospray ionization mass spectrometry (ESI‐MS) and UPLC‐MSn, respectively. The relative contents of most ginsenosides were reduced in the extract of G‐V. Furthermore, ginsenosides Rb1, Rb2, Rc and Rd could be metabolized to Rd, F2 and C‐K in rat intestinal bacteria. The metabolic speeds of Rb1, Rb2 and Rc in the G‐V extracts at ratios of 10:5, 10:7 and 10:10 and the metabolic rates of ginsenosides Rb1, Rb2 and Rc to Rd, Rd to F2 in all compatibility extracts were lower than that in the P. ginseng extract. In conclusion, this study illustrated the mechanism of effect‐reducing by comparison of the relative contents and metabolic profiles of ginsenosides after compatibility of P. ginseng and V. nigrum L.  相似文献   

4.
Ginseng (Panax ginseng C. A. Meyer) has been one of the most popular herbs used for nutritional and medicinal purposes by the people of eastern Asia for thousands of years. Ginsenosides, the mostly widely studied chemical components of ginseng, are quite different depending on the processing method used. A number of studies demonstrate the countercurrent chromatography (CCC) separation of ginsenosides from several sources; however, there is no single report demonstrating a one-step separation of all of these ginsenosides from different sources. In the present study, we have successfully developed an efficient CCC separation methodology in which the flow-rate gradient technique was coupled with a new solvent gradient dilution strategy for the isolation of ginsenosides from Korean white (peeled off dried P. ginseng) and red ginseng (steam-treated P. ginseng). The crude samples were initially prepared by extraction with butanol and were further purified with CCC using solvent gradients composed of methylene chloride–methanol–isopropanol–water (different ratios, v/v). Gas chromatography coupled with flame ionization detector was used to analyze the components of the two-phase solvent mixture. Each phase solvent mixture was prepared without presaturation, which saves time and reduces the solvent consumption. Finally, 13 ginsenosides have been purified from red ginseng with the new technique, including Rg1, Re, Rf, Rg2, Rb1, Rb2, Rc, Rd, Rg3, Rk1, Rg5, Rg6, and F4. Meanwhile, eight ginsenosides have been purified from white ginseng, including Rg1, Re, Rf, Rh1, Rb1, Rb2, Rc, and Rd by using a single-solvent system. Thus, the present technique could be used for the purification of ginsenosides from all types’ ginseng sources. To our knowledge, this is the first report involving the separation of ginsenoside Rg2 and Rg6 and the one-step separation of thirteen ginsenosides from red ginseng by CCC.  相似文献   

5.
American ginseng (Panax quinquefolius) is one of the most commonly used herbal medicines in the world. Discriminating between P. quinquefolius grown in different countries is difficult using traditional quantitation methods. In this study, a liquid chromatographic mass spectrometry fingerprint combined with chemometric analysis was established to discriminate between American ginseng grown in the USA and China. Fifteen American ginseng samples grown in Wisconsin and 25 samples grown in China were used. The chromatographic fingerprints, representing the chemical compositions of the samples, made it possible to distinguish samples from the two locations. In addition, it was found that some ginsenosides varied widely from P. quinquefolius cultivated in these two countries. P. quinquefolius grown in the USA is higher in ginsenoside Rc, ginsenoside Rd, quinquenoside III/pseudo-ginsenoside RC1, malonyl ginsenoside Rb1, and ginsenoside Rb2, but lower in ginsenoside Rb1 compared with P. quinquefolius grown in China. These ginsenosides may be responsible for the class separation seen using fingerprinting and chemometric approaches.  相似文献   

6.
A high performance centrifugal partition chromatography (HPCPC) combined with evaporative light scattering detection (ELSD) was developed for the separation and purification of ginsenosides from Panax quinquefolium. Three compounds, ginsenosides Rc, Rb1, and Re were isolated and purified by HPCPC using an optimized two-phase solvent system composed of ethyl acetate–n-butanol–water (1:1:2, v/v/v). The purities of the three ginsenosides were 96.5, 97.6, and 98.5%, respectively as determined by liquid chromatography (LC–ELSD). The CPC fractions were analyzed by LC–ELSD and electrospray ion source mass spectroscopy (ESI-MSn) in negative ion mode. The identification of the ginsenosides Rc, Rb1, and Re in the extract of P. quinquefolium was based on matching their retention times, the detection of the molecular ions, and the fragment ions of the molecular ion obtained in the CID experiments with those of the authentic standards and data reported in the literature. The results demonstrate that HPCPC coupled with ELSD is a feasible and efficient technique for systematic isolation of non-chromophoric components from traditional medicinal herbs.  相似文献   

7.
High-performance liquid chromatographic (HPLC) methods were developed for the determination of glycyrrhizin in radix Glycyrrhizae and ginsenosides Rb1, Rb2, Rc, Rd, Re, Rf and Rg1 in radix Notoginseng. These methods were used as reference methods for near-infrared (NIR) spectroscopy. Spectroscopic calibrations were developed for the determination of glycyrrhizin, the total content of ginsenosides and the individual major ginsenosides Rb1, Rd, Re and Rg1. Standard errors of cross validation (SECV) were 1.22 mg g–1 for glycyrrhizin (concentration range 21.3–34.1 mg g–1) and 0.99 mg g–1 for the sum of ginsenosides (concentration range 55.3–¶71.1 mg g–1). The corresponding coefficients of determination (R2) were 0.94 and 0.98, respectively. The SECVs were generally less than a factor of 2.5 of the repeatability standard deviation of the HPLC methods.  相似文献   

8.
As a famous health food, roots of Panax quinquefolium L. possessed immune regulation and enhancement of the central nervous system, in which ginsenosides are the main active component with different numbers and positions of sugars, causing different chemical polarities with a challenge for the separation and isolation. In this study, a fast and effective bilinear gradient counter-current chromatography was proposed for preparative isolation ginsenosides with a broad partition coefficient range from roots of Panax quinquefolium L. In terms of the established method, the mobile phases comprising n-butanol and ethyl acetate were achieved by adjusting the proportion. Coupled with the preparative HPLC, eleven main ginsenosides were successfully separated, including ginsenoside Rg1 ( 1 ), Re ( 2 ), acetyl ginsenoside Rg1 ( 3 ), Rb1 ( 4 ), Rc ( 5 ), Rg2 ( 6 ), Rb3 ( 7 ), quinquefolium R1 ( 8 ), Rd ( 9 ), gypenoside X VII ( 10 ) and notoginsenoside Fd ( 11 ), with purities exceeding 95% according to the HPLC results. Tandem mass spectrometry and electrospray ionization mass spectrometry were adopted for recognizing the isolated compound architectures. Our study suggests that linear gradient counter-current chromatography effectively separates the broad partition coefficient range of ginsenosides compounds from the roots of Panax quinquefolium L. In addition, it can apply to active compound isolation from other complicated natural products.  相似文献   

9.
Ginsenosides have been widely conceded as having various biological activities and are considered to be the active ingredient of ginseng. Nowadays, preparative high‐performance liquid chromatography is considered to be a highly efficient method for ginseng saponins purification and preparation. However, in the process of practical application, due to the complex and varied composition of natural products and relatively simple pretreatment process, it is likely to block the chromatographic column and affect the separation efficiency and its service life. In this work, an orthogonal strategy was developed; in the first‐dimension separation, reverse‐phase macroporous resin was applied to remove impurities in ginseng crude extracts and classified ginseng extracts into protopanaxatriol and protopanaxadiol fractions. In the second‐dimension separation, the obtained fractions were further separated by a preparative hydrophilic column, and finally yielded 11 pure compounds. Eight of them identified as ginsenoside Rh1, Rg2, Rd, Rc, Rb2, Rb1, Rg1, and Re by standards comparison and electrospray ionization mass spectrometry. The purity of these ginsenosides was assessed by high‐performance liquid chromatography with UV detection.  相似文献   

10.
Panax quinquefolius, a popular medicinal herb, has been cultivated in China for many years. In this work, the region-specific profiles of metabolites in P. quinquefolius from Wendeng was investigated using liquid-chromatography–quadrupole–time-of-flight-(LC–Q–TOF)-based metabolomics analysis. The three most abundant biomarkers, identified as ginsenoside Rb3, notoginsenoside R1, and ginsenoside Rc, were the representative chemical components employed in the network pharmacology analysis. In addition, molecular docking and western blotting analyses revealed that the three compounds were effective binding ligands with Hsp90α, resulting in the inactivation of SRC and PI3K kinase, which eventually led to the inactivation of the Akt and ERK pathways and lung cancer suppression. The outcomes obtained herein demonstrated the intriguing chemical characteristics and potential functional activities of P. quinquefolius from Wendeng.  相似文献   

11.
A sensitive LC-CAD method was developed for simultaneous determination of seven major triterpenoid saponins, namely ginsenosides Rg1, Re, Rb1, Rc, Rb2, Rb3 and Rd in Panax ginseng C. A. Meyer, a commonly used traditional Chinese medicine. This CAD method was evaluated in sensitivity, linearity and reproducibility compared to ELSD and UV. It was found the developed method has improved sensitivity, linearity and reproducibility compared to ELSD. This method was successfully applied to analyze the ginsenosides in ten samples of Panax ginseng. The validation results indicated that the improved method can be utilized as another approach for quality control of P. ginseng.  相似文献   

12.
A matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS)-based method has been developed for rapid differentiation between Panax ginseng and Panax quinquefolius, two herbal medicines with similar chemical and physical properties but different therapeutic effects. This method required only a small quantity of samples, and the herbal medicines were analyzed by MALDI-MS either after a brief extraction step, or directly on the powder form or small pieces of raw samples. The acquired MALDI-MS spectra showed different patterns of ginsenosides and small chemical molecules between P. ginseng and P. quinquefolius, thus allowing unambiguous differentiation between the two Panax species based on the specific ions, intensity ratios of characteristic ions or principal component analysis. The approach could also be used to differentiate red ginseng or P. quinquefolius adulterated with P. ginseng from pure P. ginseng and pure Panax quinquefolium. The intensity ratios of characteristic ions in the MALDI-MS spectra showed high reproducibility and enabled quantitative determination of ginsenosides in the herbal samples and percentage of P. quinquefolius in the adulterated binary mixture. The method is simple, rapid, robust, and can be extended for analysis of other herbal medicines.  相似文献   

13.
Microwave-assisted extraction of ginsenosides from ginseng root   总被引:2,自引:0,他引:2  
The extractions of ginsenosides Rg1 and Rb1 from ginseng root under atmospheric pressure by focused microwave-assisted technique have been investigated. The parameters used for the optimization were solvent composition, extraction time, and applied microwave power. The ginsenosides were quantified by high-performance liquid chromatography equipped with UV/Vis detector. The results of the 15-min microwave-assisted extraction (0.28% of Rg1 obtained in 70% water-ethanol and 1.31% of Rb1 obtained in 30% water-ethanol under 150 W of microwave power) were better than that from 10-h conventional solvent extraction (0.22% of Rg1 and 0.87% of Rb1 obtained in 70% water-ethanol).  相似文献   

14.
A robust method based on high-performance liquid chromatography (HPLC) with ultraviolet (UV) detection has been developed for simultaneous determination of six important ginsenosides (Rg1, Re, Rb1, Rc, Rb2, and Rd) in pharmaceutical preparations. For sample preparation, simple and efficient extraction by ultrasonication, combined with solid-phase extraction (SPE) for clean-up, was effective without consuming large amounts of solvent. Chromatographic separation was performed on an ODS column with optimized gradient elution by means of a dual-solvent-pumping system. The validated method results in excellent separation, and quantitative determination is highly precise and accurate. The problem of co-elution of ginsenosides Rg1 and Re is also solved, with good resolution (RS approx. 1.5). Intraday variation was between 0.2 and 4.4% and interday variation was between 0.4 and 6.5% (n=5 for both). The accuracy was satisfactory—in the range 93.9 to 103.4% from replicate evaluation at three different spiking concentrations. Overall limits of detection based on a typical injection volume of 5 μL were from 1.16 to 1.58 ng μL−1. The validated method enabled complete assessment for quality control of ginseng samples. The technique may be performed with less sample preparation and, consequently, reduced possibility of sample loss.  相似文献   

15.
The present paper describes the development, validation and application of a method for inorganic arsenic (iAs) determination in rice samples. The separation of iAs from organoarsenic compounds was done by off-line solid-phase extraction (SPE) followed by hydride generation atomic absorption spectrometry (HG-AAS) detection. This approach was earlier developed for seafood samples (Rasmussen et al., Anal Bioanal Chem 403:2825–2834, 2012) and has in the present work been tailored for rice products and further optimised for a higher sample throughput and a lower detection limit. Water bath heating (90 °C, 60 min) of samples with dilute HNO3 and H2O2 solubilised and oxidised all iAs to arsenate (AsV). Loading of buffered sample extracts (pH 6?±?1) followed by selective elution of arsenate from a strong anion exchange SPE cartridge enabled the selective iAs quantification by HG-AAS, measuring total arsenic (As) in the SPE eluate. The in-house validation gave mean recoveries of 101–106 % for spiked rice samples and in two reference samples. The limit of detection was 0.02 mg kg?1, and repeatability and intra-laboratory reproducibility were less than 6 and 9 %, respectively. The SPE HG-AAS method produced similar results compared to parallel high-performance liquid chromatography coupled to inductively coupled plasma mass spectrometry (ICP-MS) analysis. The SPE separation step was tested collaboratively, where the laboratories (N?=?10) used either HG-AAS or ICP-MS for iAs determination in a wholemeal rice powder. The trial gave satisfactory results (HorRat value of 1.6) and did not reveal significant difference (t test, p?>?0.05) between HG-AAS and ICP-MS quantification. The iAs concentration in 36 rice samples purchased on the Danish retail market varied (0.03–0.60 mg kg?1), with the highest concentration found in a red rice sample.   相似文献   

16.
In this work we demonstrated analytical capability of micro-planar (micro-TLC) technique comprising one and two-dimensional (2D) separation modes to generate fingerprints of environmental samples originated from sewage and ecosystems waters. We showed that elaborated separation and detection protocols are complementary to previously invented HPLC method based on temperature-dependent inclusion chromatography and UV-DAD detection. Presented 1D and 2D micro-TLC chromatograms of SPE (solid-phase extraction) extracts were optimized for fast and low-cost screening of water samples collected from lakes and rivers located in the area of Middle Pomerania in northern part of Poland. Moreover, we studied highly organic compounds loaded in the treated and untreated sewage waters obtained from municipal wastewater treatment plant “Jamno” near Koszalin City (Poland). Analyzed environmental samples contained number of substances characterized by polarity range from estetrol to progesterone as well as chlorophyll-related dyes previously isolated and pre-purified by simple SPE protocol involving C18 cartridges. Optimization of micro-TLC separation and quantification protocols of such samples were discussed from the practical point of view using simple separation efficiency criteria including total peaks number, log(product ΔhR F), signal intensity and peak asymmetry. Outcomes of the presented analytical approach, especially using detection involving direct fluorescence (UV366/Vis) and phosphomolybdic acid (PMA) visualization are compared with UV-DAD HPLC-generated data reported previously. Chemometric investigation based on principal components analysis revealed that SPE extracts separated by micro-TLC and detected under fluorescence and PMA visualization modes can be used for robust sample fingerprinting even after long-term storage of the extracts (up to 4 years) at subambient temperature (?20 °C). Such approach allows characterization of wide range of sample components that are present in given extract in high and middle concentration range. Due to protocol simplicity and low cost of analysis this method can be useful for preliminary sample screening.  相似文献   

17.
New approaches for the recovery of ginsenosides are presented that greatly simplify the liquid chromatographic (LC) determination of the total content of eight ginsenosides (Rb1, Rb2, Rc, Rd, Re, Rf, Rg1 and Rg2) in powdered Panax ginseng rhizomes. The extraction protocols not only recover the neutral ginsenosides, but also simultaneously incorporate base-catalyzed hydrolysis of the malonyl-ginsenosides using dilute potassium hydroxide added to the methanol–water extractant. This eliminates the need for an independent extraction step followed by acid- or base-catalyzed hydrolysis. Both ultrasonically-assisted and microwave-assisted extraction methods are developed. The optimization of these simplified methods to remove pendant malonate esters, while retaining the glycosidic linkages, was determined by LC through variation of the extraction/hydrolysis time, order of hydrolysis reagent addition, and evaluation of multiple extractions. A comparison of the ginsenoside profiles obtained with and without addition of base to the extractant solution was made using LCMS with positive-mode electrospray ionization (ESI+) detection. A number of malonyl-ginsenosides were tentatively identified by their mass spectral fragmentation spectra and indicating that they were converted to the free ginsenosides by the new extraction/hydrolysis procedure.
Figure
LCUV chromatograms for different extraction solvents  相似文献   

18.
A sensitive and reliable LC‐ESI‐MS method for simultaneous determination of nine ginsenosides (Rh1, Rg2, Rg1, Rf, Re, Rd, Rc, Rb2 and Rb1) in rat plasma was developed and validated using saikosaponin A as an internal standard. The samples were extracted by solid‐phase extraction. Chromatographic separation was carried out on a Hypersil Gold C18 column (100 × 2.1 mm, 5 µm) by stepwise gradient elution with water (0.1% formic acid, v/v) and acetonitrile as the mobile phase. Detection was determined by selective ion monitoring mode using electrospray ionization in the negative ion mode. Good linearity over the investigated concentration ranges was observed with the values of r higher than 0.9900. The intra‐ and inter‐day precisions were all no more than 15% and the average recoveries varied from 71.8 to 91.7%. This quantitative measurement was successfully applied to a pharmacokinetic study of Yi‐Qi‐Fu‐Mai injection. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

19.
Splenic lymphocytes play an important role in host acute or chronic diseases. The abnormality of these cells in the spleens of humans might lead to some riskful diseases for human. Hence, in this study, the effects of two ginsenosides Rg1 and Rb1 on splenic lymphocytes growth were studied by microcalorimetry. Some qualitative and quantitative information, such as the metabolic power-time curves, growth rate constant k, maximum heat-output power of the exponential phase P max, total heat output Q t of splenic lymphocytes were obtained to present the effects of Rg1 and Rb1 on these cells. The values of k, P max, and Q t from the thermogenic growth curves of splenic lymphocytes were found to increase in the presence of Rg1, while the change was adverse for Rb1, illustrating that Rg1 had promotion effect and Rb1 had inhibitory effect on splenic lymphocytes growth and these promotion or inhibitory effects were enhanced with increasing the concentration of the two compounds, respectively. The microcalorimetric results were confirmed by MTT assay for determining the MTT optical density (OD) value and [3H] Thymidine incorporation assay ([3H]-TdR) for determining the count per minute (cpm) value: Rg1 could increase the MTT OD value and the cpm value of [3H]-TdR incorporation into splenic lymphocytes, and these values were increased with increasing the concentration of this compound, while Rb1 had the adverse results. The structure–activity relationships showed that the glucopyranoside and hydroxyl groups at the dammarane-type mother nucleus skeleton might play a crucial role for the opposing effects of the two ginsenosides on splenic lymphocytes. Compared with the other two assay methods, the microcalorimetric method provided more useful and reliable information for quickly and objectively evaluating the effects of drugs or compounds on the living cells, which would be a highly promising analytical tool for the characterization of the biological process and the estimation of the drugs’ efficiency.  相似文献   

20.
陈树东  冯锐  林晓佳  梁土金  何秋婷 《色谱》2021,39(5):526-533
建立了以固相萃取结合超高效液相色谱-串联质谱(UPLC-MS/MS)同时检测保健食品中9种原人参二醇型和原人参三醇型人参皂苷的方法.保健食品中人参皂苷经过提取后,通过Alumina-N/XAD-2 SPE柱净化,在Hypersil Gold C18色谱柱(100 mm×2.1 mm,1.9μm)上分离,利用乙酸铵溶液(...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号