首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 764 毫秒
1.
Rapid and selective enrichment of phosphopeptides from complex biological samples is essential and challenging in phosphorylated proteomics. In this work, for the first time, niobium ions were directly immobilized on the surface of polydopamine-coated magnetic microspheres through a facile and effective synthetic route. The Fe3O4@polydopamine-Nb5+ (denoted as Fe3O4@PD-Nb5+) microspheres possess merits of high hydrophilicity and good biological compatibility, and demonstrated low limit of detection (2 fmol). The selectivity was also basically satisfactory (β-casein:BSA = 1:500) to capture phosphopeptides. They were also successfully applied for enrichment of phosphopeptides from real biological samples such as human serum and nonfat milk. Compared with Fe3O4@PD-Ti4+ microspheres, the Fe3O4@PD-Nb5+ microspheres exhibit superior selectivity to multi-phosphorylated peptides, and thus may be complementary to the conventional IMAC materials.  相似文献   

2.
The interactions of two model phosphoproteins (porcine pepsin and ovalbumin) with two different immobilized metal affinity chromatography (IMAC) sorbents containing immobilized Fe3+, Ga3+, and UO2 2+ ions have been investigated under various conditions. Both proteins were adsorbed on immobilized uranyl ions under acidic conditions similar to those on immobilized Fe3+ and Ga3+ ions. The retained proteins could be released either by the presence of phosphate ions in the elution buffer (immobilized Ga3+ and Fe3+ ions) or by an increased pH (all tested immobilized ions). The IMAC sorbents employed could be used under the conditions of high-performance chromatography and are suitable for the separation and analysis of intact phosphoproteins.  相似文献   

3.
Magnetic non-porous hydrophilic poly(2-hydroxyethyl methacrylate-co-glycidyl methacrylate) microspheres prepared by the dispersion polymerization and modified with iminodiacetic acid (IDA) were employed for the IMAC separation of phosphopeptides. Fe3+ and Ga3+ ions immobilized on IDA-modified magnetic microspheres were used for the enrichment of phosphopeptides from the proteolytic digests of two model proteins differing in their physico-chemical properties and phosphate group content: porcine pepsin A and bovine α-casein. The optimum conditions for phosphopeptide adsorption and desorption in both cases were investigated and compared. The phosphopeptides separated from the proteolytic digests were analyzed by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. The ability of the prepared Fe3+- and Ga3+-IDA-modified magnetic microspheres to capture phosphopeptides from complex mixtures was shown on an example of bovine milk proteolytic digest.  相似文献   

4.
Abstract

A new multifunctional colorimetric and fluorescent chemosensor 1 for Fe3+/2+ and Al3+ has been synthesized in the one-step procedure. The sensor 1 detected both Fe2+ and Fe3+ through the color change from yellow to brown and Al3+ via turn-on fluorescence. The binding stoichiometries of sensor 1 with Fe3+/2+ and Al3+ were proposed to be 1:1 with the analyses of ESI-mass and Job plot. Importantly, the detection limits of 1 for Fe3+/2+ (2.11 and 2.70 μM) and Al3+ (3.44 μM) were lower than the EPA guideline (5.37 μM) for Fe3+/2+ and WHO guideline (7.41 μM) for Al3+. Compound 1 was used to quantify ferric species (Fe3+) in real samples. Moreover, the sensing processes for Fe3+/2+ and Al3+ were proposed with the spectroscopic studies and theoretical calculations.  相似文献   

5.
Three novel compounds bearing 2,7-dihydroxylnaphthalene capable of detecting Cu2+ or Fe3+ have been synthesised based on photoinduced electron transfer. The ability of these compounds for complex transition metal ions has been studied, and complex stoichiometry for Cu2+ and Fe3+ complex has been determined in the Tris–HCl (0.01 M DMSO/H2O (v/v) 1:1, buffer, pH 7.4) solution system by fluorescence titration experiments. These chemosensors form a 1:1 complex with Cu2+ or Fe3+ and show a fluorescent quenching with a binding constant of (4.46 ± 0.29) × 103 and (8.04 ± 0.26) × 104, respectively.  相似文献   

6.
Functional polymers with a metal–coordination interaction have been fabricated for sample pretreatment. Poly(N‐4‐vinyl‐benzyl iminodiacetic acid‐co‐methacrylic acid‐co‐styrene)‐modified magnetic nanoparticles were prepared and used as solid‐phase extraction adsorbents for the analysis of quinolones by tuning the metal–coordination interaction. In the construction of the polymer‐based adsorbents, functional monomer (N‐(4‐vinyl)‐benzyl iminodiacetic acid) and comonomers (methacrylic acid and styrene) were fabricated onto the magnetic nanoparticles by free radical polymerization. Factors affecting the performance of the adsorbents were investigated, and the results revealed that Fe3+ played a vital role in the formation of metal–coordination adsorbents. Compared with other compounds, the resultant adsorbents displayed good selectivity to quinolones due to the metal–coordination complex (N‐4‐vinyl‐benzyl iminodiacetic acid‐Fe3+‐quinolones). Interestingly, the captured quinolones could be rapidly released by manipulating the metal–coordination interaction with Cu2+. The linearity range for analysis of the test quinolones was 0.025–2.0 μg/mL (R2 > 0.999), and the recovery varied from 80.0 to 100.7%. Further, the proposed adsorbents were combined with high‐performance liquid chromatography for the analysis of quinolones in real urine samples. The results demonstrated that the prepared adsorbents have good selectivity and sensitivity for quinolones, showing great potential for drug analysis in real samples.  相似文献   

7.
In this work, we provided a fluorescent sensor based on a compound containing fluorophore quinazoline ketone for detecting metal ions. 2-Methyl-4(3 H)-quinazoline thione was synthesised as a fluorescent probe for tervalent ferric ion (Fe3+) detection. Fluorescent determination of 2-methyl-4(3 H)-quinazoline thione indicated its maximum emission wavelength of 306.5 nm. The fluorescence interference and titration experiments have shown that the compound has a high selective fluorescence response to Fe3+. With an increase in the Fe3+ ion concentration, the fluorescence emission strength gradually weakened, and a slight red shift appeared. With Job’s method, 2-methyl-4(3 H)-quinazoline thione was proved to form a 1:2 complex with Fe3+. The results revealed that 2-methyl-4(3 H)-quinazoline thione could be used as a fluorescent probe for the recognition of Fe3+ with high selectivity.  相似文献   

8.
The effect of the structure of a mixture of industrially produced iron and iron oxide on the decomposition of trichloroethylene (TCE) was investigated by gas chromatography, scanning electron microscopy, Fourier transform infrared spectroscopy, energy dispersive X-ray analysis, X-ray diffractometry, and 57Fe-Mössbauer spectroscopy. The concentration of 10 mg L?1 TCE aqueous solution decreased to 0.41, 0.52, 0.26, and 0.09 mg L?1 when stirred for 7 days with iron–iron oxide mixtures having mass ratios of 2:8, 3:7, 4:6, and 5:5, respectively. The Mössbauer spectra of the mixtures after leaching were composed of two sextets with respective isomer shifts (δ) and internal magnetic fields (H) of 0.29±0.01 mm s?1 and 48.8±0.1 T, and 0.64±0.01 mm s?1 and 45.5±0.1 T, attributed to the Fe3+ species in tetrahedral (T d) and the Fe2+ and Fe3+ mixed species (Fe2.5+) in octahedral (O h) sites, respectively. Mössbauer spectra of a 3:7 mass ratio iron–iron oxide mixture showed a gradual decrease in the absorption area (A) of zero valent iron (Fe0) from 40.6. to 12.6, 13.2, 3.8 2.8, and 1.0±0.5 % and an increase in A of Fe3O4 from 31.8 to 59.4, 71.4, 93.2, 95.6, and 98.0±0.5 % after leaching with 10 mg L?1 TCE aqueous solution for 1, 2, 3, 7, and 10 days, respectively. Consistent values of the first-order rate constant were calculated as 0.32 day?1 for Fe0 oxidation, 0.34 day?1 for Fe3O4 production, and 0.30 day?1 for TCE decomposition, which indicates that the oxidation of Fe0 was the rate-controlling factor for Fe3O4 production and TCE decomposition. It is concluded from the experimental results that an iron–iron oxide mixture is very effective for the decomposition of TCE.  相似文献   

9.
A new lawsone-based azo-dye 2-hydroxy-3-((pyridin-2-ylmethyl)diazenyl)naphthalene-1,4-dione (1) was synthesized and applied for sensing of metal ions. Receptor 1 showed selective fluorescent and colorimetric response for the detection of Cu2+ and Fe3+ over other tested metal ions. The fluorescence intensity of 1 was significantly quenched allowing detection of Fe3+ and Cu2+ down to 0.61 and 6.06 μM, respectively. The binding has been established by fluorescence spectroscopic method. Receptor 1 provided a 1?:?1 binding scaffold for recognition of Fe3+ and Cu2+ ions with the association constant of 3.33 × 106 and 3.33 × 105 M?1, respectively. The B3LYP/6-31G/LANL2DZ method was employed for the optimization of 1 and 1·Fe3+ and 1·Cu2+.  相似文献   

10.
A new dual chemosensor (TTF-PBA) for Fe3+ and Cu2+ in different signal pathways was designed and synthesized. The absorption spectrum, fluorescence spectrum and cyclic voltammograms changed in the presence of Cu2+ and Fe3+. The optical color changed within 5 s from yellow to orange upon the addition of Cu2+, and it changed to dark yellow when Fe3+ existed. The cyclic voltammogram of Cu2+/TTF-PBA changed from Eox = 0.50 V, Ered = 0.32 V to Eox = 0.64 V, Ered = 0.80 V (vs Ag/AgCl) upon the addition of 2.0 equiv. Cu2+. As for Fe3+/TTF-PBA, its oxidation wave disappeared, and its reduction wave appeared at Ered = ?0.59 V (vs Ag/AgCl) upon the addition of 4.0 equv. Fe3+. The sensor displayed high selectivity for Cu2+ and Fe3+ over other ions including Pb2+, Zn2+, Ni2+, Ag+, Cr3+, Mn2+, Al3+, Co2+, Pd2+, Hg2+, Fe2+, Cd2+, Ce3+, Bi3+ and Au3+, the detection limits for Cu2+ and Fe3+ ion reached as low as 5.33 × 10?7 mol/L and 5.34 × 10?7 mol/L, respectively. Furthermore, when Fe3+ existed, Cu2+ can be detected sequentially by the sensor through the absorption spectrum and the color change observed by naked-eyes.  相似文献   

11.
A vortex-assisted dispersive liquid–liquid microextraction method in combination with UV–Vis spectrophotometry was developed for the simultaneous extraction and determination of iron species. In this method, Fe2+ and Fe3+ were complexed with pyridine-2-amidoxime, neutralized through ion pair formation with sodium dodecyl sulfate, and extracted into the fine droplets of chloroform. After centrifugation, the absorbance of the extracted complexes was recorded in the wavelength range of 360–700 nm. The parameters affecting the extraction efficiency such as the pH, the type and volume of the extraction solvent, ligand concentration, and sample volume were optimized. The individual iron species was then determined by means of the orthogonal signal correction–generalized partial least squares method. Under the optimized conditions, the calibration curves were linear over the range of 2.0–100 and 3.0–200 µg L?1 with detection limits of 0.4 µg L?1 for Fe2+ and 0.8 µg L?1 for Fe3+, respectively. The relative standard deviations for intra- and inter-day assays (n = 5) were 2.3 and 4.0 for Fe2+ at 50 µg L?1 and 2.7 and 4.3 for Fe3+ at 30 µg L?1, respectively. The enhancement factors of 77 and 69 were achieved for Fe2+ and Fe3+, respectively. The proposed method was successfully applied to the determination of iron species in water samples.  相似文献   

12.
In our current work, we describe how open tubular‐immobilized metal‐ion affinity chromatography (OT‐IMAC) capillary columns connected to a solid phase microextraction (in‐tube SPME) device can be used for the enrichment of phosphopeptides. A phosphonate modified silica nanoparticle (NP)‐deposited capillary was prepared by liquid phase deposition (LPD), and used for the immobilization of Fe3+, Zr4+ or Ti4+. The enrichment capacities of three different OT‐IMAC capillary columns were compared by using tryptically digested α‐casein as sample. The improved extraction efficiency in our technique was demonstrated by comparing to a directly modified capillary, and a comparison of phosphopeptide extraction from simple and complex samples was tested for both modes. Our results show that the NP‐IMAC‐Zr4+ capillary column can be used to selectively isolate phosphopeptides from real samples, and can enrich for β‐casein phosphopeptides from concentrations as low as 1.7×10?9 M.  相似文献   

13.
In this study, a simple approach was described for the fabrication of CaSO4/Fe0 composite used as a novel adsorbent for the reductive removal of Cu2+ from aqueous solutions. The magnetic CaSO4/Fe0 composite was prepared by a solid state reaction at 550 °C in the H2 atmosphere using CaSO4·2H2O/α-FeOOH as a precursor. The structure and morphology of the as-synthesized magnetic composite were characterized by X-ray diffraction, field emission scanning electron microscopy and a superconducting quantum interference device, respectively. Results showed that the CaSO4/Fe0 composite with a rod-like shape could be easily acquired from the CaSO4·2H2O/α-FeOOH precursor with the ratio of 1:0.5 at 550 °C in the H2 atmosphere for 1 h. The CaSO4/Fe0 composite exhibited enhanced performance relevant to the reductive removal of Cu2+. The removal amount of Cu2+ increased linearly with increasing of concentration of Cu2+ in wastewater. Possible removal mechanisms were proposed as follows: (1) the formation of Cu2O by fast reduction of Cu2+ with Fe0 nanoparticles on interface of CaSO4/Fe0 composite, (2) proper adsorption of Cu2+ on the surface of CaSO4/Fe0 composite, (3) the hydrous iron oxide (HIO) such as Fe (OH)3 and FeOOH in situ generated on the rest of CaSO4/Fe0 composite could further adsorb Cu2+ from wastewater.  相似文献   

14.
In the present study, application of Fe3O4 magnetic nanoparticles (MNPs) coated with diethyldithiocarbamate as a solid-phase sorbent for extraction of trace amounts of cadmium (Cd2+) and nickel (Ni2+) ions by the aid of ultrasound was investigated. The analytes were determined by inductively coupled plasma-optical emission spectroscopy. Fe3O4 MNPs were prepared by solvothermal method and characterized with dynamic light scattering, scanning electron microscope and X-ray diffraction. Response surface methodology was used for optimization of the extraction process and modeling the data. The optimal conditions obtained were as follows: chelating agent, 1.2 g L?1; pH, 6.13; sonication time, 13 min and Fe3O4 MNPs, 10.3 mg. The calibration curves were linear over the concentration range of 1–1,000 μg L?1 for Cd2+ and 2.5–1,000 for Ni2+ with the determination coefficients (R 2) of 0.9997 and 0.9995, respectively. The limits of detection were 0.27 μg L?1 for Cd2+ and 0.76 μg L?1 for Ni2+. The relative standard deviations (n = 7, C = 200 μg L?1) for determination of Cd2+ and Ni2+ were 2.0 and 2.7 %, respectively. The relative recoveries of the analytes from tap, river and lagoon waters and rice samples at the spiking level of 10 μg L?1 were obtained in the range of 95–105 %.  相似文献   

15.
A new sorbent comprising 3-aminopropyltriethoxy-silane-coated magnetic nanoparticles functionalized with organic moieties containing the cobalt(III) porphyrin complex Co (TCPP) [TCPP: 4,4′,4″,4″′-(21H,23H-porphine-5,10,15,20-tetrayl)tetrakis (benzoic acid)], was prepared, for nitrite removal from drinking water. Fe3O4 nanoparticles were synthesized by co-precipitation of Fe2+ and Fe3+, then surface of the Fe3O4 nanoparticles was modified with APTES and Co (TCPP). The sorbent was characterized using FTIR, TGA, XRD, SEM and TEM analysis. The batch experiments showed that the proposed sorbent can effectively be used to remove nitrite from water. Various parameters such as pH of the solution, contact time, sorbent dosage, concentration of desorbing reagent, and influence of other interfering anions have been investigated. Under optimal conditions for a nitrite concentration of 10 mg L?1 (i.e., contact time 15 min, pH 5.5 and nanosorbents dosage 100 mg), the percentage of the extracted nitrite ions was 92.0. Nitrite sorbing material was regenerated with 10 mM NaOH up to 97.0 %. The regeneration studies also showed that nanosorbents are regenerable and can be used for a couple of times.  相似文献   

16.
Two crown ethers carrying pyrene side arms with nitrogen-sulfur donor atom were designed and synthesized by the reaction of the corresponding macrocyclic compounds and 1-bromomethyl-pyrene. The influence of metal cations such as Al3+, Zn2+, Fe2+, Fe3+, Co2+, Ni2+, Mn2+, Cu2+, Cd2+, Hg2+ and Pb2+ on the spectroscopic properties of the ligands was investigated in acetonitrile-tetrahydrofuran (1:1) by means of absorption and emission spectrometry. Absorption spectra show isosbestic points in the spectrophotometric titration of Al3+, Zn2+, Fe2+, Ni2+, Cu2+, and Pb2+ with 16-membered crown ether. Similar results were obtained for Al3+, Fe2+, Hg2+, Cu2+ and Pb2+ with 14-membered crown ether. The results of spectrophotometric titration experiments disclosed the complexation stoichiometry and complex stability constants of the novel ligands with these cations. According to spectrofluorimetric titration measurements the 14-membered diazadithia crown ether showed sensitivity for Pb2+ with linear range and detection limit of 1.3 × 10?6 to 5.2 × 10?5 M and 5.2 × 10?7 M, respectively. The 16-membered diazadithia crown ether showed sensitivity for Ni2+ with linear range and detection limit of 1.3 × 10?7 to 5.2 × 10?6 M and 4.1 × 10?8 M, respectively.  相似文献   

17.
《Analytical letters》2012,45(17):3074-3087
Abstract

Insoluble porous solid, macrocyclic 22-membered ring, 1-oxa-6,9,12,15,18-pentaaza-2,22-disilacyclododocosane polysiloxane ligand system has been prepared by the reaction of a macro-silane agent with tetraethylorthosilicate. The macro-silane agent was prepared by the reaction of imino-bis(N-2-aminoethylacetamide) ligand with 3-iodopropyltrimethoxysilane in 1:3 molar ratio. The new prepared polysiloxane system exhibits variable potentials for the extraction of metal ions (Fe3+, Co2+, Ni2+, Cu2+, Zn2+, Ag+, Cd2+, Hg2+, and Pb2+) from aqueous solutions. The ligand system shows high capacity to extract silver, lead, and mercury. Chemisorption of the metal ions by the ligand system at the optimum conditions was found in the order Ag + > Pb2+ > Hg2+ > Cu2+ > Ni2+ > Fe3+ > Co2+ > Cd2+ > Zn2+.  相似文献   

18.
A new crown ether carrying two anthryl groups with nitrogen–sulfur donor atom was designed and synthesized by the reaction of the corresponding macrocyclic compound and 9-chloromethyl anthracene. The influence of metal cations such as Al3+, Zn2+, Fe2+, Fe3+, Co2+, Ni2+, Mn2+, Cu2+, Cd2+, Hg2+ and Pb2+ on the spectroscopic properties of the ligand was investigated in acetonitrile–tetrahydofuran solution (1/1) by means of absorption and emission spectrometry. Absorption spectra show isosbestic points in the spectrophotometric titration of Fe2+, Fe3+, Al3+, Cu2+ and Hg2+. The results of spectrophotometric titration experiments disclosed the complexation stoichiometry and complex stability constant of the novel ligand with Fe2+, Fe3+, Al3+, Cu2+and Hg2+cations. The presence of excess amounts of Al3+, Zn2+, Fe2+, Fe3+, Co2+, Ni2+, Mn2+, Cu2+, Cd2+, Hg2+ and Pb2+ cations caused an enhancement of anthryl fluorescence. The ligand showed good sensitivity for Zn2+ with respect to other metal cations with linear range and detection limit of 1.4 × 10?7 to 4.1 × 10?6 M and 1.0 × 10?8 M respectively.  相似文献   

19.
A new fluorescent probe L based on the rhodamine 6G platforms for Fe3+ has been designed and synthesised. L showed excellent selectivity and high sensitivity for Fe3+ against other metal ions such as K+, Na+, Ag+, Cu2+, Co2+, Mg2+, Cd2+, Ni2+, Zn2+, Fe2+, Hg2+, Ce3+ and Y3+ in HEPES buffer (10 mM, pH 7.4)/CH3CN (40:60, V/V). The distinct color change and the rapid emergence of fluorescence emission provided naked-eyes detection for Fe3+. The recognition mechanism of the probe toward Fe3+ was evaluated by Job’s plots, IR and ESI-MS. In order to further study their fluorescent properties, L + Fe3+ fluorescence lifetime was also measured. Moreover, the test strip results showed that these probes could act as a convenient and efficient Fe3+ test kit.  相似文献   

20.
Five aromatic azo dyes with hydroxyl groups (1–5) were designed and synthesized by coupling reactions. The relationships between structures of the compounds and the spectroscopic properties were investigated. The absorption spectra of these compounds upon titration with K+, Ca2+, Al3+, Mg2+, Ni2+, Mn2+, Cd2+, Cr3+, Fe3+, Cu2+, Zn2+, Co2+, Hg2+, and Pb2+ ions in neutral aqueous solutions were reported. The results are coincident with the calculation results using the density functional theory method. The high selectivity, excellent water solubility and simple synthetic process make 1-[(2-Hydroxyl)phenylazo]-2-naphthol (5) a potential sensor for sensing Fe3+ and Mn2+ with the naked eye. 1-[(2-hydroxyl)phenylazo]-2-naphthol-6-sulfonic acid (3) shows high selectivity for the colorimetric detection of Fe3+ and Co2+ among the tested metal ions. The detection limitations of 3 for determining Co2+ and Fe3+ were calculated to be 2.8 × 10?7 and 5.6 × 10?7 mol/L, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号