首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Wu  Yin-Liang  Xu  Yong  Yang  Ting  Huang-Fu  Wei-Guo 《Chromatographia》2011,74(11):833-838

This paper presents an analytical method for the simultaneous determination of zoalene and its metabolite 3-amino-5-nitro-o-toluamide (3-ANOT) in chicken muscle and liver by solid phase extraction and UPLC–MS-MS operated in the positive and negative ionization switching mode. Samples were extracted with phosphate buffer solution and purified with OASIS HLB cartridge after pH adjustment. The determination was carried out using UPLC–MS-MS on a Waters Acquity BEH C18 column with 0.1% formic acid in water/acetonitrile as mobile phase with gradient elution. The linearity of the analytical response across the studied range of concentrations (2.0–1,000 μg L−1) was excellent, obtaining correlation coefficients higher than 0.999. Matrix effects had been investigated for zoalene and 3-ANOT. Recovery studies were carried out on spiked chicken muscle and liver blank samples, at four concentration levels (50, 1,500, 3,000, and 4,500 μg kg−1 for chicken muscle and 50, 3,000, 6,000, and 9,000 μg kg−1 for chicken liver) performing six replicates at each level. Mean recoveries of 77.9–94.2% with CVs of 3.2–8.7% were obtained. The method demonstrated to be suitable for the simultaneous determination of zoalene and 3-ANOT in chicken tissues.

  相似文献   

2.
This paper presents an analytical method for the simultaneous determination of zoalene and its metabolite 3-amino-5-nitro-o-toluamide (3-ANOT) in chicken muscle and liver by solid phase extraction and UPLC?CMS-MS operated in the positive and negative ionization switching mode. Samples were extracted with phosphate buffer solution and purified with OASIS? HLB cartridge after pH adjustment. The determination was carried out using UPLC?CMS-MS on a Waters Acquity BEH C18 column with 0.1% formic acid in water/acetonitrile as mobile phase with gradient elution. The linearity of the analytical response across the studied range of concentrations (2.0?C1,000 ??g L?1) was excellent, obtaining correlation coefficients higher than 0.999. Matrix effects had been investigated for zoalene and 3-ANOT. Recovery studies were carried out on spiked chicken muscle and liver blank samples, at four concentration levels (50, 1,500, 3,000, and 4,500 ??g kg?1 for chicken muscle and 50, 3,000, 6,000, and 9,000 ??g kg?1 for chicken liver) performing six replicates at each level. Mean recoveries of 77.9?C94.2% with CVs of 3.2?C8.7% were obtained. The method demonstrated to be suitable for the simultaneous determination of zoalene and 3-ANOT in chicken tissues.  相似文献   

3.
Determination of ten sulfonamides (SAs) in egg and honey has been compared using column liquid chromatography (LC) and ultra-performance liquid chromatography (UPLC) coupled to tandem mass spectrometry (MS–MS). A liquid–liquid extraction with acetonitrile followed by solid-phase extraction on a Strata-X cartridge was developed for sample preparation. The analytical performance of both methods was compared applying the alternative matrix-comprehensive in-house validation approach using specially designed software InterVal?. Using UPLC the separation time was shortened about 30% reducing the run time by 8 min and a better resolution was achieved compared to LC. Due to higher peak efficiency achieved with UPLC, the decision limit values obtained by both techniques were almost equal (6.61–9.43 μg kg?1 and 7.25–11.9 μg kg?1 for UPLC and LC, respectively), despite the fact that in UPLC twice lower sample volumes were injected. Satisfactory and comparable recoveries (80–110%) were obtained by UPLC and LC for all the SAs, except for sulfacetamide by LC and sulfabenzamide by both methods. For a majority of the spiked compounds, UPLC gave significantly better precision.  相似文献   

4.
A sensitive and selective liquid chromatographic tandem mass spectrometric (LC–MS–MS) method was developed for simultaneous identification and quantification of tamsulosin and dutasteride in human plasma, which was well applied to clinical study. The method was based on liquid–liquid extraction, followed by an LC procedure with a Gemini C-18, 50 mm × 2.0 mm (3 μm) column and using methanol:ammonium formate (97:3, v/v) as the mobile phase. Protonated ions formed by a turbo ionspray in positive mode were used to detect analytes and internal standard. MS–MS detection was by monitoring the fragmentation of 409.1 → 228.1 (m/z) for tamsulosin, 529.3 → 461.3 (m/z) for dutasteride and 373.2 → 305.3 (m/z) for finasteride (IS) on a triple quadrupole mass spectrometer. The lower limit of quantification for both tamsulosin and dutasteride was 1 ng mL?1. The proposed method enables the unambiguous identification and quantification of tamsulosin and dutasteride for clinical drug monitoring.  相似文献   

5.
Li  Yonggang  Chen  Ziliang  Zhang  Rui  Luo  Ping  Zhou  Yan  Wen  Sheng  Ma  Meihu 《Chromatographia》2016,79(17):1165-1175

A quick, easy, cheap, rugged, effective, and safe (QuEChERS)-based method has been validated for the extraction of 42 pesticides and herbicides including organophosphorus pesticides (OPPs), carbamate pesticides (CBs), herbicides (HBs), organochlorine pesticides (OCPs), and synthetic pyrethroid pesticides (PYRs) from chicken eggs. The QuEChERS-based extraction procedure was followed by cleanup steps using C18 and primary secondary amine sorbents. The supernatant was analyzed by ultra-high performance liquid chromatography–tandem mass spectrometry (UHPLC–MS/MS) and gas chromatography–mass spectrometry (GC–MS). The OPPs, CBs, and HBs were quantified by UHPLC–MS/MS, while the OCPs and PYRs were detected by GC–MS. The limits of quantification ranged from 0.01 to 8.5 μg kg−1, and the analyte recoveries were in the range of 64.9–123.2 %. Furthermore, the repeatabilities (intra-day and inter-day) were good, and linear matrix-matched calibration curves were obtained. Acetochlor was identified in concentrations ranging from 0.27 to 0.44 μg kg−1 in four samples from 80 chicken eggs. The method was successfully demonstrated for the fast and reliable analysis of pesticides and herbicides in chicken egg samples.

  相似文献   

6.
7.
A simple, sensitive, selective and rapid liquid chromatography–tandem mass spectrometry method was developed and validated for the simultaneous separation and quantitation of atenolol and chlorthalidone in human plasma using metoprolol and hydrochlorothiazide as internal standard. Following solid phase extraction, the analytes were separated by an isocratic mobile phase on a reversed-phase C18 column and analyzed by MS in the multiple reaction-monitoring mode (atenolol in positive and chlorthalidone in the negative ion mode). The limit of quantitation for this method was 10 and 15 ng mL?1 and the linear dynamic range was generally 10–2,050 ng mL?1 and 15–3,035 ng mL?1 for atenolol and chlorthalidone, respectively.  相似文献   

8.
For the first time a sensitive, specific and rapid LC–MS–MS assay is presented for the simultaneous determination of levodopa (L-DP), 3-O-methyldopa (3-OMD) and benserazide (BSZ) in human serum. The three compounds were extracted from human serum by protein precipitation followed by dilution of the supernatant with aqueous formic acid. In serum, linearity was observed between 50 and 1,000 ng mL?1 of L-DP, 3-OMD and BSZ, respectively. Intra-day and inter-day RSD values were below 10.56 and 6.22% at concentrations of 120, 360 and 720 ng mL?1. The presented method showed excellent specificity and sensitivity compared with other methods reported. It was applied to a pharmacokinetic study and demonstrated its applicability to pre-clinical and clinical pharmacological research.  相似文献   

9.
In this study, a specific and quick ultra-performance liquid chromatography tandem mass spectrometry (UPLC–MS/MS) method was fully developed and validated for simultaneous measurement of the rat plasma levels of vortioxetine (VOR), Lu AA34443 (the major metabolite of VOR), fluoxetine and its metabolite norfluoxetine with diazepam as the internal standard (IS). After a simple protein precipitation with acetonitrile for sample preparation, the separation of the analytes were performed on an Acquity UPLC BEH C18 (2.1 × 50 mm, 1.7 μm) column, with acetonitrile and 0.1% formic acid in water as mobile phase by gradient elution. The detection was achieved on a triple quadrupole tandem mass spectrometer by multiple reaction monitoring mode via an electrospray ionization source. Good linearity was observed in the calibration curve for each analyte. The data of precision, accuracy, matrix effect, recovery and stability all conformed to the bioanalytical method validation of acceptance criteria of US Food and Drug Administration recommendations. The newly developed UPLC–MS/MS method allowed simultaneous quantification of VOR, fluoxetine and their metabolites for the first time and was successfully applied to a pharmacokinetic study in rats.  相似文献   

10.
Steroid hormone concentrations are mostly determined by using different body fluids as matrices and applying immunoassay techniques. However, usability of these approaches may be restricted for several reasons, including ethical barriers to invasive sampling. Therefore, we developed an ultra-performance LC–MS–MS method for high-throughput determination of concentrations of cortisol, cortisone, dehydroepiandrosterone (DHEA), and DHEA sulfate (DHEAS) in small quantities of human nails. The method was validated for linearity, limits of detection and quantification, recovery, intra and interassay precision, accuracy, and matrix effect. Samples from 10 adult women were analyzed to provide proof-of-principle for the method’s applicability. Calibration curves were linear (r 2 > 0.999) in the ranges 10–5000 pg mg−1 for cortisol, cortisone, and DHEAS, and 50–5000 pg mg−1 for DHEA. Limits of quantification were 10 pg mg−1 for cortisol, cortisone, and DHEAS, and 50 pg mg−1 for DHEA. The sensitivity and specificity of the method were good, and there was no interference with the analytes. Mean recovery of cortisol, cortisone, DHEA, and DHEAS was 90.5%, 94.1%, 84.9%, and 95.9%, respectively, with good precision (coefficient of variation <14% for all analytes) and accuracy (relative error (%) −8.3% to 12.2% for all analytes). The median (pg mg−1, range) hormone concentrations were 69.5 (36–158), 65 (32–133), 212 (50–1077), and 246 (115–547) for cortisol, cortisone, DHEA, and DHEAS, respectively. This method enables measurement of cortisol, cortisone, DHEA, and DHEAS in small quantities of human nails, leading to the development of applications in endocrinology and beyond.  相似文献   

11.
12.
Min Shen  Hui Yan  Ping Xiang  Baohua Shen 《Chromatographia》2009,70(9-10):1381-1386
A liquid chromatographic-tandem mass spectrometric method for the simultaneous determination of anabolic androgenic steroids and their esters in hair has been developed. The hair sample was treated with methanol to extract the esters, followed by alkaline digestion for optimum recovery of the anabolic androgenic steroids. After liquid–liquid extractions, the extract was dried, redissolved and analyzed by multiple reaction monitoring with a quadrupole mass spectrometer. The lower limits of detection ranged from 0.001 to 0.020 ng mg?1 for the 21 analytes. The applicability of the method was demonstrated using guinea pig hair samples gained from controlled experiments.  相似文献   

13.
Zhang  Chunhua  Wu  Huiqin  Huang  Xiaolan  Zhu  Zhixin  Luo  Huitai  Huang  Fang  Lin  Xiaoshan 《Chromatographia》2012,75(9-10):499-511

A sensitive and selective method for simultaneous determination of 29 toxic alkaloids in human blood and 31 in urine using high-performance liquid chromatography–electrospray ionization-tandem mass spectrometry was developed and validated. The samples were diluted with 0.1 mol L−1 HCl, and the target alkaloids were purified by solid phase extraction. The separation of 31 alkaloids was carried out on a C18 column using a gradient mobile phase with 10 mmol L−1 ammonium formate in water with 0.1% formic acid and methanol at the rate of 0.25 mL min−1. The triple-quadrupole mass spectrometer equipped with an electrospray source in the positive mode was set up in the dynamic multiple reactions monitoring mode (dynamic MRM) to detect the ion transitions of 31 alkaloids. The calibration curves were linear over a range of 0.5–400, 1–400, or 4–400 μg L−1 for target alkaloids in human blood and urine, and the correlation coefficients (r 2) was higher than 0.9943. The limit of determination and limit of quantification were 0.2–1 and 0.5–4 μg L−1 for blood and urine, respectively. The only exceptions were sanguinarine and chelerythrine in human blood. All the target alkaloids were stable under the test condition. In addition, the solvent effect and reconstituted solution were investigated. The method was validated and proved to be accurate and precise over the studied concentrations and suitable for poisoning diagnosis and forensic toxicology.

  相似文献   

14.
A rapid, selective and convenient liquid chromatography–mass spectrometric method for the simultaneous determination of paracetamol and caffeine in human plasma was developed and validated. Analytes and theophylline [internal standard (I.S.)] were extracted from plasma samples with diethyl ether-dichloromethane (3:2, v/v) and separated on a C18 column (150 × 4.6 mm ID, 5 μm particle size, 100 Å pore size). The mobile phase consisted of 0.2% formic acid–methanol (60:40, v/v). The assay was linear in the concentration range between 0.05 and 25 μg mL?1 for paracetamol and 10–5,000 ng mL?1 for caffeine, with the lower limit of quantification of 0.05 μg mL?1 and 10 ng mL?1, respectively. The intra- and inter-day precision for both drugs was less than 8.1%, and the accuracy was within ±6.5%. The single chromatographic analysis of plasma samples was achieved within 4.5 min. This validated method was successfully applied to study the pharmacokinetics of paracetamol and caffeine in human plasma.  相似文献   

15.
A selective, rapid and sensitive liquid chromatography tandem mass spectrometry method has been developed for the simultaneous determination of ramipril and ramiprilat in human plasma using enalapril as the internal standard via one-step extraction with ethyl acetate under acidic condition. The analysis was carried out on a Diamonsil C18 column (150 mm × 4.6 mm i.d., 5 μm) with a mobile phase consisting of 1% formic acid-acetonitrile (25:75, v/v) at a constant flow rate of 0.5 mL min?1. The detection was performed on a triple-quadruple tandem mass spectrometer by selective reaction monitoring mode via electrospray ionization. Linear calibration curves of ramipril and ramiprilat were obtained in the concentration range of 0.107–107.0 and 0.262–105.0 ng mL?1, respectively. The intra- and inter-day precision (RSD) values were below 8.2 and 4.8% for ramipril, 10.4 and 12.3% for ramiprilat, and accuracy (RE) were within ±5.5 and ±3.2%, respectively at all QC levels. The method was utilized to support clinical pharmacokinetic studies in healthy volunteers following oral administration of ramipril tablets.  相似文献   

16.
Oleandrin and adynerin are the main toxic components of oleander, an evergreen shrub or a small tree of the oleander family, which belongs to the class of cardiac glycosides exhibiting delayed action. The pharmacokinetic differences of oleandrin and adynerin in rats were studied by ultra-performance liquid chromatography–tandem mass spectrometry (UPLC–MS/MS) under two different administration modes: oral (5 mg/kg) and sublingual intravenous injection (1 mg/kg). The chromatographic column was UPLC BEH C18 (50 mm × 2.1 mm, 1.7 μm), and the column temperature was set at 40 °C. The mobile phase was acetonitrile–water (containing 0.1 % formic acid), with gradient elution, the flow rate was 0.4 mL/min, and the elution time was 4 min. Electrospray (ESI) positive ion mode detection with multiple reaction monitoring mode (MRM) was used for quantitative analysis: oleandrin m/z 577 → 145, adynerin m/z 534 → 113, and internal standard m/z 237 → 135. The established UPLC–MS/MS method was successfully applied to the pharmacokinetics in rats after administering oleandrin and adynerin. The bioavailability of oleandrin and adynerin was found to be low, 7.0 % and 93.1 %; respectively.  相似文献   

17.
The US Alcohol and Tobacco Tax and Trade Bureau (TTB) is responsible for collecting Federal excise taxes on tobacco products. Tobacco products in the USA may fall into several taxable categories including cigars, cigarettes, snuff, chewing tobacco, pipe tobacco, and roll-your-own. The existence of these taxable categories means that the TTB is also responsible for the determination of proper tax classification. Not only does proper classification determine the amount of tax owed, but comprehensive classification procedures must also determine if a consumer product is subject to the tobacco excise tax. Since a product must contain tobacco to be subject to the excise tax, laboratory methods that test for the presence of tobacco can provide useful information to ascertain the taxable status of a product. To test for the presence of chemical markers associated with tobacco, an analytical method was developed that permits the simultaneous determination of nicotine and related alkaloids, tobacco-specific nitrosamines (TSNA), and solanesol in methanolic extracts of tobacco. The method utilizes ultra performance liquid chromatography with electrospray ionization–tandem mass spectrometric detection (UPLC–ESI-MS/MS) and was optimized for the analysis of nicotine, cotinine, nornicotine, anatabine, myosmine, anabasine, isonicoteine, nornicotyrine, nicotyrine, N-nitrosoanatabine (NAT), N-nitrosoanabasine (NAB), 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK), N′-nitrosonornicotine (NNN) and solanesol. The analytical method was designed to attenuate the instrument response of nicotine, which is overwhelming, to permit simultaneous analysis of all analytes.  相似文献   

18.
19.

Liquid chromatography coupled with tandem mass spectrometry for therapeutic drug monitoring of immunosuppressants has been widely adopted in clinical chemistry laboratories. However, UPLC is replacing classical LC techniques, providing higher resolution and speed. We developed and validated an UPLC–MS/MS method for the simultaneous measurement of cyclosporine A, everolimus, sirolimus and tacrolimus concentrations in human blood. Following extraction with a zinc sulfate solution and acetonitrile, the chromatographic separation was achieved using an Acquity® UPLC® BEH™ (2.1 × 30 mm id, 1.7 µm) reverse-phase C18 column, with a water/methanol linear gradient containing 2 mM ammonium acetate with 0.1 % formic acid at a 0.5 mL min−1 flow rate. All immunosuppressants were detected by ESI mass spectrometry in positive ion multiple reaction monitoring mode using mass-to-charge transitions of 1219.8 → 1202.6/1184.4, 975.5 → 908.3/891.6, 931.5 → 864.3/883.3, 821.4 → 768.2/719.9 for cyclosporine A, everolimus, sirolimus and tacrolimus, respectively. Coefficients of variation and relative bias were less than 5.8 and 9.7 % for cyclosporine A, 8.7 and 6.4 % for everolimus, 8.5 and 7.2 % for sirolimus and 6.7 and 4.7 % for tacrolimus. Limits of quantification were 15.4 µg L−1 for cyclosporine A, 1.42 µg L−1 for everolimus, 1.58 µg L−1 for sirolimus and 0.65 µg L−1 for tacrolimus. Mean recoveries were greater than 77.6 % for all immunosuppressants. Evaluation of the matrix effect showed ion suppression for all the immunosuppressants, except for cyclosporine A, which suffered ion enhancement. No carry-over was observed. The validated method appears to be well adapted for therapeutic drug monitoring of multiple immunosuppressants in daily clinical practice.

  相似文献   

20.
Endothelin receptor antagonists (ERAs) such as, ambrisentan, macitentan and sitaxentan are primarily used for the treatment of pulmonary arterial hypertension. Considering the rise in endothelin in pre-eclampsia, ERAs may also be useful in its treatment. To evaluate the pharmacokinetics of ERAs, a rapid ultra-performance liquid chromatography tandem mass spectrometry method was developed and validated to determine the concentration of ambrisentan, macitentan and sitaxentan in human plasma. Plasma samples were treated with methanol to induce protein precipitation. A chromatographic separation was performed on a C18 column using a gradient of methanol–water containing 0.1% formic acid and 0.013% ammonium acetate and a flow rate of 0.5 ml/min. Multiple reaction monitoring was used for quantification. This method was validated in a linear range of 20.28–2028 μg/l for ambrisentan, 4.052–405.2 μg/l for macitentan and 205.4–10 270 μg/l for sitaxentan. The method was successfully validated according to US Food and Drug Administration guidelines to determine the concentrations of macitentan, ambrisentan and sitaxentan in human plasma. This method is now being used for study samples and clinical patient samples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号