首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 247 毫秒
1.
《Analytical letters》2012,45(9):1927-1939
Abstract

A sensitive and simple micellar electrokinetic chromatography (MEKC) method was developed for the determination of the antiepileptic drug carbamazepine (CBZ) using a sweeping on‐line concentration method with photodiode array detection. The effect of pH, concentration of the running buffer solution, organic modifier, applied voltage and injection time on the concentration efficiency and separation was investigated. An untreated fused‐silica capillary was used (50 cm; effective length, 40 cm, 75 µm i.d.) for the analysis. The background solution (BGS) was 50 mmol · L?1 NaH2PO4 (pH 3.0) containing 100 mmol · L?1 SDS and 20% acetonitrile (5.82 ms · cm?1) with an applied voltage of ?20 kV at 25°C. Sample introduction was performed at 0.5 psi for 90 s with diode array detection at 214 nm. For the method, the calibration curve was linear over a range of 0.5–40 µg · mL?1 for CBZ with a correlation coefficient of 0.998. The detection limit (S/N=3∶1) of CBZ was 0.10 µg · mL?1. About 100‐fold improvement in concentration sensitivity was achieved in terms of peak height by the sweeping method compared to conventional injection method. The sweeping‐MEKC method has been successfully applied to the analysis of CBZ in tablet and human serum.  相似文献   

2.
《Analytical letters》2012,45(9):1513-1527
In this report, the determination of testosterone, progesterone, estrone, 17-β-estradiol, and ethynilestradiol by micellar electrokinetic chromatography (MEKC) is described. Several organic modifiers were investigated using sodium dodecyl sulfate as the surfactant agent in the background electrolyte. The effect of the acetonitrile concentration on the migration time of the steroids and on the selectivity was also studied by using different background electrolytes. Under the optimized conditions that included a sodium tetraborate (pH 9.3; 25 mM) buffer with 10 mM sodium dodecyl sulfate, 20% (v/v) of acetonitrile, 27 kV running voltage, and injection with a plug of background electrolyte (7 mbar × 1 s), the analytical performance of the method was evaluated. Good linearity (correlation coefficients, R 2 ≥ 0.99) and adequate precision were achieved, with limits of detection of 1.27, 2.17, 0.6, 1.13, and 1.7 µg/mL for testosterone, progesterone, estrone, 17-β-estradiol, and ethynilestradiol, respectively. To study the effect of the acetonitrile concentration on the solute-micelle interaction, the retention factor and association constants were determined. In all cases, the association constants decreased by increasing the acetonitrile concentration from 10% to 30%, suggesting that the presence of large amounts of organic modifier decreased the steroid-micelle interactions.  相似文献   

3.
In this paper, we report the use of micellar electrokinetic chromatography (MEKC) for the highly efficient preconcentration and separation of gold nanoparticles (Au NPs). We used the reversed electrode polarity stacking mode (REPSM) of the MEKC system for the on-line enhancement and separation of the Au NPs. Several parameters had dramatic effects on the systems’ performance, including the concentration of sodium dodecylsulfate (SDS) surfactant, the presence of salts in the NP solution, the pH of the running electrolyte, and the temperature of the capillary. Under the optimized conditions [buffer: SDS (70 mM) and 3-cyclohexylamino-1-propanesulfonic acid (CAPS; 10 mM) at pH 10.0; applied voltage: 20 kV; operating temperature: 25 °C; additive: sodium dihydrogenphosphate (NaH2PO4, 10 mM); REPSM strategy for sample preconcentration], the number of theoretical plates for the 5.3- and 40.1-nm-diameter Au NPs were 3000 and (an ultrahigh) 2.1 × 106, respectively; in addition, the detection sensitivities toward the Au NPs were enhanced ca. 20- and 380-fold, respectively, relative to those obtained using standard MEKC analysis conditions. Furthermore, monitoring the electropherograms using diode-array detection allowed us to identify and characterize the sizes of the separated NPs from their UV–vis spectra. Our findings suggest that MEKC is a highly efficient tool for both the preconcentration and separation of NPs.  相似文献   

4.
Chen  Zhitao  Zhong  Zibei  Xia  Zhining  Yang  Fengqing  Mu  Xiaojing 《Chromatographia》2012,75(1-2):65-70

The hydrophobic ionic liquid [BMIM]PF6 (1-butyl-3-methylimidazolium hexafluorophosphate) can interact with sodium dodecyl sulfate (SDS) micelles in aqueous solution and modify their physicochemical properties to produce a unique separation efficiency in micellar electrokinetic chromatography (MEKC). An MEKC method was developed using [BMIM]PF6 as a modifier for separating eight fluoroquinolone compounds (ciprofloxacin, enrofloxacin, gatifloxacin, ofloxacin, norfloxacin, enoxacin, pazufloxacin, and tosufloxacin). The effects of several parameters on the separation selectivity, e.g., pH, concentration of background electrolyte, concentration ratio and amount of [BMIM]PF6 and SDS, were investigated. Under the optimal conditions of 10 mmol L−1 sodium borate, pH 7.1, 1.7% (w/w) SDS, 1.5% (w/w) [BMIM]PF6 with 18 kV as running voltage, the eight investigated quinolone compounds were baseline separated within 15 min. The selectivity of the developed method differed from that of the simple SDS micelles system containing no ionic liquid. The results suggest that hydrophobic ionic liquids should be promising modifiers in capillary electrophoresis, especially in MEKC analysis.

  相似文献   

5.
The ionic liquid 1-hexadecyl-3-methylimidazolium bromide ([C16MIm]Br) has been used as a novel cationic surfactant for separation of phenolic compounds, including quinol, phloroglucinol, resorcinol, phenol, p-cresol, and m-nitrophenol, by micellar electrokinetic capillary chromatography (MEKC). The effects of buffer concentration and pH, concentration of [C16MIm]Br, and applied potential were studied. Use of the optimized buffer (25 mmol L?1 NaH2PO4), 10 mmol L?1 [C16MIm]Br, and an applied potential of ?15 kV enables optimum separation with regard to resolution and migration time. The phenolic compounds were detected at 214 nm. The micelle of this long-alkyl-chain imidazolium ionic liquid acts as a pseudo-stationary phase in this MEKC separation.  相似文献   

6.
Separation of anabolic and androgenic steroids by micellar electrokinetic chromatography (MEKC) has been little studied. Simultaneous separation of the endogenous alpha-epimers testosterone and epitestosterone has not been achieved with any electroseparation technique. Here, a partial filling micellar electrokinetic chromatographic (PF-MEKC) method is described for the analysis of three endogenous steroid hormones (androstenedione, testosterone, epitestosterone) and two synthetic anabolic steroids (fluoxymesterone, methyltestosterone). The resolution efficiency of single-isomer sulphated gamma-cyclodextrins and the surfactants sodium dodecyl sulphate and sodium taurocholate was exploited. The method is based on the sequential introduction of short plugs of two different pseudostationary phases into the capillary. The separation was completed in less than 10 min. The method can be used in quantitative analysis. Linear correlation was obtained between concentration and peak area of 0.996 or better. The repeatability (RSD) of the compound peak areas ranged from 3.6% (methyltestosterone) to 6.2% (androstenedione). Limits of detection were between 73 microg/L (testosterone) and 160 microg/L (fluoxymesterone). As a demonstration of the method, androstenedione, testosterone and epitestosterone were determined in a spiked urine sample.  相似文献   

7.
The determination of the antiandrogen drug nilutamide in human serum by MEKC using flutamide as an internal standard is described. Several parameters influencing the separation, such as the running electrolyte composition concerning the micelle concentration and pH, are discussed. MEKC separation was achieved within 7 min using 50 mM sodium borate pH 9.0 with the addition of 50 mM sodium dodecylsulfate at +20 kV. The proposed method was applied to determination of nilutamide in spiked human serum samples after protein precipitation with acetonitrile. The increasing of sensitivity for determination of nilutamide in serum was done by sweeping in a high salt concentration sample matrix when the injection of a larger volume of sample diluted in 150 mM NaCl was applied. The limit of detection after the preconcentration step for nilutamide was 26 ??g L?1.  相似文献   

8.
A new micellar electrokinetic capillary chromatographic (MEKC) method has been developed for simultaneous quantitation of atorvastatin (AT) and its related substances. The separation was carried out in an extended light path capillary at applied voltage of 30 kV using a background electrolyte consisting of 10 mM sodium tetraborate buffer pH 9.5, 50 mM sodium dodecyl sulphate and 20% (v/v) methanol. The addition of methanol to the running buffer resulted in a very effective choice to achieve resolution between the peaks of charged substances adjacent to AT as well as the peaks of neutral drug-related substances. Linear calibration curves were established over the concentration range 100–1,200 μg mL?1 for AT and 1.0–12.5 μg mL?1 for related substances. The proposed MEKC procedure has been validated with respect to selectivity, precision, linearity, limits of detection, and quantitation, accuracy and robustness. The method has been successfully applied to the determination of AT and purity evaluation of bulk drug and formulated products.  相似文献   

9.
Drift tube ion mobility spectrometry (DTIMS) coupled with mass spectrometry was evaluated for its capabilities in rapid separation of endogenous isomeric steroids. These compounds, which included eight isomer groups, were investigated as protonated and sodiated species and collision cross sections were measured for all ionization species of each steroid. Pregnenolone (CCSN2 176.7 Å2) and 5α-dihydroprogesterone (CCSN2 191.4 Å2) could be separated as protonated species, and aldosterone (CCSN2 197.7 Å2) and cortisone (CCSN2 211.7 Å2) could be separated as sodiated monomers. However, the sodiated dimers of the remaining isomers yielded increased separation, resulting in baseline resolution. Specific structural differences including ring conformation and the chirality of hydroxyl groups were compared to evaluate their relative effects on collision cross section in isomers. These results indicated that C5 ring conformation isomers androsterone and etiocholanolone, which both contain a C3 α-hydroxyl group, yielded similar dimer CCS. Yet these compounds were well resolved from their respective β-hydroxyl epimers, trans-androsterone and epietiocholanolone. Alternative drift gases were evaluated, and carbon dioxide drift gas offered slight improvement in isomer resolution well, including allowing separation of testosterone (CCSCO2 330.0 Å2), dehydroepiandrosterone (CCSCO2 312.6 Å2), and epitestosterone (CCSCO2 305.6 Å2). Finally, different metal cation adducts, including alkali, alkaline earth, and first row transition metal adducts were analyzed, and several of these species provided improved resolution between steroid epimers. Overall, this study shows that drift tube ion mobility is a promising tool for improved separation of isomeric steroids.  相似文献   

10.
Hong-Xu Chen 《Talanta》2009,78(2):464-61
Testosterone is one of the most common doping drugs abused by athletes. Therefore, it is necessary to develop a sensitive and simple method to monitor testosterone and its epimer epitestosterone. An off-line immunoaffinity extraction followed by capillary electrophoresis for simultaneous determination of testosterone and epitestosterone has been described in this paper. Anti-epitestosterone monoclonal antibody which is specific to both testosterone and epitestosterone had been prepared and immobilized on a Sepharose 4B stationary phase. The immunoaffinity column was used for sample cleanup, extraction and preconcentration. After elution and reconstitution, testosterone and epitestosterone in the sample were separated and quantified by micellar electrokinetic chromatography(MEKC) using the borate buffer (200 mM borate, pH 8.7) containing 40 mM sodium cholate as a chiral selector. The immunoaffinity column was evaluated in different parameters such as the retention mechanism, selectivity, binding capacity, elution protocol, and reusability. The separation of these two compounds by MEKC was also optimized. Limit of detection for testosterone and epitestosterone were 5 and 23 ng mL−1, respectively. It was satisfactory to apply this method to analyze testosterone and epitestosterone in spiked urine sample with the recoveries from 78% to 109%.  相似文献   

11.
Bile salts are naturally occurring chiral surfactants that are able to solubilize hydrophobic compounds. Because of this ability, bile salts were exploited as chiral selectors added to the background solution (BGS) in the chiral micellar electrokinetic chromatography (MEKC) of various small molecules. In this review, we aimed to examine the developments in research on chiral MEKC using bile salts as chiral selectors over the past 20 years. The review begins with a discussion of the aggregation of bile salts in chiral recognition and separation, followed by the use of single bile salts and bile salts with other chiral selectors (i.e., cyclodextrins, proteins and single-stranded DNA aptamers). Advanced techniques such as partial-filling MEKC, stacking and single-drop microextraction were considered. Potential applications to real samples, including enantiomeric impurity analysis, were also discussed.  相似文献   

12.
《Analytical letters》2012,45(13):1849-1861
The anti-cancer synthetic drug irinotecan (CPT-11) and its active metabolite SN-38 have been determined by micellar electrokinetic capillary chromatography (MEKC). The detection of the analytes was made at 368 nm and their separation took less than 7 min using a borate buffer (pH 8.8 at 25 mmol L?1) solution containing sodium dodecyl sulfate (45 mmol L?1) and acetonitrile (13.5% v/v). On-line analyte concentration (normal stacking mode) and the use of a highly sensitive cell (Z shaped cell) improved detection limits (at the 10?8 mol L?1 level). Recovery in fortified human saliva was 108 ± 5%, in agreement with the result achieved with the reference HPLC method. For the analysis of urine from rats submitted to a single dose of CPT-11 and SN-38, camptothecin was used as internal standard enabling recoveries close to 100% when compared to the results achieved using HPLC.  相似文献   

13.
The potential of the modified magnetic nanoparticles for covalent immobilization of porcine pancreatic α-amylase has been investigated. The synthesis and immobilization processes were simple and fast. The co-precipitation method was used for synthesis of magnetic iron oxide (Fe3O4) nanoparticles (NPs) which were subsequently coated with silica through sol–gel reaction. The amino-functionalized NPs were prepared by treating silica-coated NPs with 3-aminopropyltriethoxysilane followed by covalent immobilization of α-amylase by glutaraldehyde. The optimum enzyme concentration and incubation time for immobilization reaction were 150 mg and 4 h, respectively. Upon this immobilization, the α-amylase retained more than 50 % of its initial specific activity. The optimum pH for maximal catalytic activity of the immobilized enzyme was 6.5 at 45 °C. The kinetic studies on the immobilized enzyme and its free counterpart revealed an acceptable change of Km and Vmax. The Km values were found as 4 and 2.5 mM for free and immobilized enzymes, respectively. The Vmax values for the free and immobilized enzymes were calculated as 1.75 and 1.03 μmol mg?1 min?1, in order, when starch was used as the substrate. A quick separation of immobilized amylase from reaction mixture was achieved when a magnetically active support was applied. In comparison to the free enzyme, the immobilized enzyme was thermally stable and was reusable for 9 cycles while retaining 68 % of its initial activity.  相似文献   

14.
《Analytical letters》2012,45(10):1853-1863
Abstract

NiO nanoparticles (NiO NPs) were prepared with chemical precipitation method and modified on the surface of vaseline‐impregnated graphite electrode with chitosan. It was found that, based on the catalysis of the NiO NPs for the chemiluminescent reaction of the ECL process, the enhancing effect of isoniazid on the weak electrogenerated chemiluminescence (ECL) signal of luminol at a NiO NPs‐chitosan modified electrode was stronger than that at a bare graphite electrode. Under the optimum experimental conditions, the relative ECL intensity was linear with isoniazid concentration over the range 3.0×10?10~1.0×10?6 g/ml at the NiO NPs‐chitosan modified electrode with a detection limit of 1.0×10?10 g/ml.  相似文献   

15.
The separation and determination of aminophenols and phenylenediamines were investigated by liquid chromatography (LC) and micellar electrokinetic chromatography (MEKC) in this study. Aminophenols and phenylenediamines are commonly used components in commercial hair colorants. The problem of tailing peaks in LC was improved by the technique of using mobile phase containing 15 mM triethylamine at pH 8.0. The analysis of o-aminophenol was not succeeded with LC even though the modifier of triethylamine was added. But it could be quantitative successfully by MEKC. The optimum separation condition of MEKC was achieved by employing 55 mM cetyltrimethyl ammonium chloride in 50 mM borate buffer (pH 9.2) with electric field strength of −145 V cm−1. Finally, the commercial hair dyes were analyzed by developing methods of LC and MEKC. From both the results, there is no significant difference presence at 99.5% confidence level. These two methods could give the complementary results.  相似文献   

16.
Xiao  Wen  Chen  Cen  Zhang  Qian  Zhang  Qi-Hui  Hu  Yuan-Jia  Xia  Zhi-Ning  Yang  Feng-Qing 《Chromatographia》2015,78(21):1385-1393

Isoflavones are a very important group of natural products. This study investigated the separation of eight isoflavones, namely ononin, daidzin, genistin, biochanin A, formononetin, puerarin, genistein, and daidzein, from pueraria by micellar electrokinetic chromatography (MEKC) with different surfactants. The following micellar systems of MEKC were systematically compared for the analysis of these isoflavones: (1) a single surfactant comprising the anionic surfactant sodium dodecyl sulfate (SDS), the cationic surfactant hexadecyltrimethylammonium bromide, the neutral surfactant polyoxyethylene sorbitan monolaurate (Tween 20), and the ionic liquid-type surfactant (also a cationic surfactant) 1-dodecyl-3-methylimidazolium tetrafluoroborate (C12MIMBF4); (2) different single surfactants with 1-butyl-3-methylimidazolium tetrafluoroborate (BMImBF4) as an additive (modifier); and (3) mixed micelles of SDS + Tween 20 and C12MIMBF4 + Tween 20. Both SDS with BMImBF4 as additive and mixed micelles of SDS + Tween 20 had the highest separation efficiency for the eight investigated compounds. Furthermore, the SDS with BMImBF4 as additive was more stable (good repeatability of retention time and peak shape of analytes) than mixed micelles of SDS + Tween 20, which may be the result of a stabilizing effect of BMImBF4. Therefore, the final analytical conditions were 15 mM SDS added with 50 mM BMImBF4 in 30 mM sodium tetraborate (STB, pH 9.5) as running buffer; applied voltage, 20 kV; injection, 50 mbar for 5 s; cartridge temperature, 25 °C; compounds were detected at 260 nm. The developed method was fully validated (limit of detection, limit of quantification, intraday precision, inter-day precision, and recovery) and successfully applied to determine the eight analytes in three Radix Puerariae samples. The present study indicated that SDS with ionic liquids as additive in MEKC was suitable for the analysis of isoflavones.

  相似文献   

17.
Silica nanoparticles (NPs) dispersed in an aerated aqueous solution containing Ag+ were irradiated to a dose of 10 kGy using 60Co γ-rays. The typical surface plasmon band of Ag NPs was observed around 400 nm, indicating that even in the presence of dissolved oxygen the reduction of Ag+ occurred by silica NPs. Transmission electron microscopy images indicated that Ag NPs formed on the surface of the silica NPs. The subtraction spectra showed broad absorption around 500 nm with the absorbance depending on the dose. The electrons generated by charge separation from silica NPs with a size of about 12 nm reduce Ag+ to Ag0 and form (Ag0) n species on the silica NPs, and the type of (Ag0) n species formed depended on the silica NP, and Ag+ contents, and the dose. In the co-presence of organic molecules on the silica NP such as rhodamine, the absorbance of the surface plasmon band of both Ag NPs and rhodamine decreased, indicating the electrons to participate in the reductive decomposition of rhodamine molecules adsorbed on the silica NP. Furthermore, in the case when the silica NPs contained fluorescein molecules, the fluorescein molecules were also decomposed, indicating that the fluorescein molecules adsorbed on the inner surface of the silica NPs. The addition of I2 as an oxidative reagent prevented the decomposition of the fluorescein molecules, indicating that electrons are the main species emitted from irradiated silica NPs.  相似文献   

18.
Testosterone and testosterone enanthate are performance-enhancing substances that are banned in racehorses competing in the State of Pennsylvania (PA). A tolerance concentration of 2,000 pg mL?1 plasma has been established for testosterone in intact colts and stallions at the time they are competing in PA. Testosterone enanthate is a precursor of testosterone and can be used to boost plasma testosterone concentration above natural, age and seasonally variable plasma concentration. To control abuse, a verifiable method for rapid determination of both substances in equine plasma was needed. For this reason, an ultra high performance liquid chromatography-tandem mass spectrometry method for high-throughput analysis of both analytes in equine plasma was developed. Analytes were recovered from plasma by liquid–liquid extraction using mixture of methyl tert-butyl ether and ethyl acetate (50:50, v/v), separated on a C18 sub-2 μm column and detected on a triple quadrupole mass spectrometer using positive electrospray ionization mode with selected reaction monitoring scan. SRM ion transitions of m/z 289 → m/z 97, m/z 289 → m/z 109, m/z 289 → m/z 79 were used for testosterone identification while m/z 401 → m/z 253, m/z 401 → m/z 271, m/z 401 → m/z 97 were employed for testosterone enanthate. Retention time and product ion intensity ratio were used as confirmation criteria to ascertain the presence of both analytes in equine plasma. The limits of detection, quantification and confirmation were 50 pg 0.5 mL?1, 100 pg 0.5 mL?1 and 250 pg 0.5 mL?1, respectively for both analytes. The method was validated for recovery efficiency, sensitivity, matrix effect, linearity, precision and accuracy. This method is routinely used in the PA program for androgenic anabolic steroids doping control in racehorses and in the on-going testosterone enanthate pharmacokinetics study. The method is defensible, fast, selective, specific and reproducibly reliable.  相似文献   

19.
Fu-Ken Liu 《Chromatographia》2007,66(9-10):791-796
In this paper we report the use of size-exclusion chromatography (SEC) for rapid determination of the sizes and size distributions of Au nanoparticles (NPs) prepared by seed-assisted synthesis. Analytical separation of Au NPs was performed in a polymer-based column of pore size 400 nm. We characterized the sizes and size distributions of the Au NPs by using 10 mM sodium dodecyl sulfate (SDS) as mobile phase and obtained a linear relationship (R 2 = 0.986) between retention time and size of Au NPs within the range 9.8–79.1 nm; the relative standard deviations of these retention times were less than 0.3%. These separation conditions were used to characterize the sizes and size distributions of Au NPs prepared by seed-assisted synthesis. In addition to observing the elution times of the Au NPs we also simultaneously characterized their size-dependent optical properties by spectral measurement of the eluting peaks by use of an on-line diode-array detector (DAD), i.e., monitoring of the stability of the Au NP products. By using this approach we found the presence of SDS was beneficial in stabilizing the synthesized Au NPs. We also found that the volume of Au metal ions used affected the sizes of the final products. SEC seems an efficient tool for characterizing the sizes of NPs fabricated by seed-assisted synthesis.  相似文献   

20.
A stability‐indicating MEKC method was developed and validated for the analysis of lumiracoxib (LMC) in pharmaceutical formulations using nimesulide as the internal standard (IS). Optimal conditions for the separation of LMC and degradation products were investigated. The method employed 50 mM borate buffer and 50 mM anionic detergent SDS solution at pH 9.0. MEKC method was performed on a fused‐silica capillary (50 μm id; effective length, 40 cm) maintained at 30°C. The applied voltage was 20 kV and photodiode array (PDA) detector was set at 208 nm. The method was validated in accordance with the International Conference on Harmonisation requirements. The stability‐indicating capability of the method was established by enforced degradation studies combined with peak purity assessment using PDA detection. The degradation products formed under stressed conditions were investigated by LC‐ESI‐MS and the two degraded products were identified. MEKC method was linear over the concentration range of 5–150 μg/mL (r2=0.9999) of LMC. The method was precise, accurate, with LOD and LOQ of 1.34 and 4.48 μg/mL, respectively. The robustness was proved by a fractional factorial design evaluation. The proposed MEKC method was successfully applied for the quantitative analysis of LMC in tablets to support the quality control.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号