首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
A sensitive, economic, rapid and simple method for the determination of four N-methylcarbamate pesticides: methomyl (2.0–80 μg L?1), aldicarb (5.0–50 μg L?1), butocarboxim (2.0–60 μg L?1) and oxamyl (2.0–60 μg L?1); is reported. It relies on the coupling of photoinduced chemiluminescence (PICL) detection with flow injection (FI) methodology. The automation of FI together with the use of light as a reagent decreased the environmental impact of the analysis. The proposed method was based on the oxidation of these pesticides, previously irradiated on-line with UV light, with cerium(IV), using quinine as a sensitiser. Limits of detection below the legal limits (100 ng L?1) established by the European Union for drinking waters were obtained without the need of preconcentration steps. A good inter-day reproducibility (1.6–6.4%, n = 5), repeatability (rsd = 2.7 %, n = 25) and high throughput (123 h?1) were achieved. The method was successfully applied to the determination of methomyl in natural waters with mean recoveries ranging from 90% to 98%.  相似文献   

2.
The occurrence of 26 commonly used cytostatic compounds in wastewaters was evaluated using an automated solid-phase extraction (SPE) method with liquid chromatography–high-resolution mass spectrometry (LC–HRMS). Detection was optimized using Oasis HLB SPE cartridges at pH 2. Two hospital effluents and their two receiving wastewater treatment plants were sampled over five days. In hospital effluents, eight cytostatics were detected at levels up to 86.2 μg L?1 for ifosfamide, 4.72 μg L?1 for cyclophosphamide, and 0.73 μg L?1 for irinotecan, the three most relevant compounds identified. Cyclophosphamide and megestrol acetate were found in wastewaters at concentrations up to 0.22 μg L?1 for the latter. The predicted environmental concentrations (PEC) in sewage effluents of ifosfamide (2.4–4.3 ng L?1), capecitabine (11.5–14.2 ng L?1), and irinotecan (0.4–0.6 ng L?1), calculated from consumption data in each hospital, published excretion values for the target compounds, and wastewater elimination rates, were in agreement with experimental values.  相似文献   

3.
A simple, rapid and efficient method termed dispersive liquid–liquid microextraction combined with liquid chromatography-fluorescence detection, has been developed for the extraction and determination of polycyclic aromatic hydrocarbons (PAHs) in water and fruit juice samples. Parameters such as the kind and volume of extraction solvent and dispersive solvent, extraction time and salt effect were optimized. Under optimum conditions, the enrichment factors ranged from 296 to 462. The linear range was 0.01–100 μg L?1 and limits of detection were 0.001–0.01 μg L?1. The relative standard deviations (RSDs, for 5 μg L?1 of PAHs) varied from 1.0 to 11.5% (n = 3). The relative recoveries of PAHs from tap, river, well and sea water samples at spiking level of 5 μg L?1 were 82.6–117.1, 74.9–113.9, 77.0–122.4 and 86.1–119.3%, respectively. The relative recoveries of PAHs from grape and apple juice samples at spiking levels of 2.5 and 5 μg L?1 were 80.8–114.7 and 88.9–123.0%, respectively. It is concluded that the proposed method can be successfully applied for determination of PAHs in water and fruit juice samples.  相似文献   

4.
A single-drop microextraction (SDME) procedure with a modified microsyringe was developed for the analysis of six organophosphorus pesticides (OPPs) in water. Microsyringe was modified by attaching a 2-mm cone onto the needle tip end. The conditions affecting SDME performance including microextraction solvent, stirring speed, extraction time, ionic strength and sample pH were optimized. Under the optimized conditions, the linear ranges of the SDME with ethion as internal standard were 0.05–50 μg L?1 (except for dimethoate 5–5,000 μg L?1) and limits of detection (LOD) were 0.012–0.020 μg L?1 (except for dimethoate 0.45 μg L?1). Recoveries of six pesticides were in the range of 70.6–107.5 % with relative standard deviation lower than 6.0 %. The modified method is simple, rapid and sensitive, and acceptable in the analysis of OPPs pesticides in water samples.  相似文献   

5.
Dispersive liquid–liquid microextraction (DLLME) based on the solidification of floating organic droplets (DLLME-SFO) combined with gas chromatography-electron-capture detection (GC–ECD) has been developed for extraction and analysis of three dinitrobenzenes. The extraction conditions including extraction solvent, disperser solvent, extraction time, salt effect and temperature were investigated and optimized systematically. The limits of detection were 0.019 μg L?1 for 1,4-dinitrobenzene, 0.079 μg L?1 for 1,3-dinitrobenzene and 0.034 μg L?1 for 1,2-dinitrobenzene. Moreover, it offered good repeatability and high recovery. This method was successfully applied to monitor DNBs in different water samples.  相似文献   

6.
In this paper, a highly selective Sudan IV molecularly imprinted polymer was synthesized by surface molecular imprinting technique in combination with a sol?Cgel process using ??-aminopropyl triethoxysilane as functional monomer, tetraethoxysilane as cross-linker and activated silica gel as support material. The imprinted polymer was characterized by FT-IR spectra, scanning electron micrograph and adsorption experiments and it was exhibited good recognition and selective ability, offered a faster rate for the adsorption of Sudan IV. Using the imprinted material as sorbent, a solid-phase extraction coupled with high-performance liquid chromatography method for determination of trace Sudan IV was presented. The detection limit (S/N = 3) was 25.2 ng L?1, and the RSD for five replicate was 2.86%. With a loading flow rate of 2.5 mL min?1 for loading 30 mL, an enrichment factor of 104 was achieved. This method was applied for extraction and determination of chilli powder and duck egg samples with good recoveries ranging from 85.3 to 98.1%.  相似文献   

7.
《Analytical letters》2012,45(7-8):1172-1189
The purpose of this study consists in reporting of single laboratory validation of a method for the determination of total inorganic arsenic by hydride generation atomic absorption spectrometry from natural and residual water samples. Applicability, fitness for purpose, selectivity, and sensitivity were discussed. A calibration study was realized, linear working range (0.4–4 μg·L?1), detection (0.11 μg·L?1), and quantification (0.38 μg·L?1) limits being determined. It was also proven that the method is accurate and precise. Following the bottom-up approach measurement, uncertainty was estimated (method validation data were used).  相似文献   

8.
Extraction and determination of estrogens in water samples were performed using alcoholic-assisted dispersive liquid–liquid microextraction (AA-DLLME) and high-performance liquid chromatography (UV/Vis detection). A Plackett–Burman design and a central composite design were applied to evaluate the AA-DLLME procedure. The effect of six parameters on extraction efficiency was investigated. The factors studied were volume of extraction and dispersive solvents, extraction time, pH, amount of salt and agitation rate. According to Plackett–Burman design results, the effective parameters were volume of extraction solvent and pH. Next, a central composite design was applied to obtain optimal condition. The optimized conditions were obtained at 220 μL 1-octanol as extraction solvent, 700 μL ethanol as dispersive solvent, pH 6 and 200 μL sample volume. Linearity was observed in the range of 1–500 μg L?1 for E2 and 0.1–100 μg L?1 for E1. Limits of detection were 0.1 μg L?1 for E2 and 0.01 μg L?1 for E1. The enrichment factors and extraction recoveries were 42.2, 46.4 and 80.4, 86.7, respectively. The relative standard deviations for determination of estrogens in water were in the range of 3.9–7.2 % (n = 3). The developed method was successfully applied for the determination of estrogens in environmental water samples.  相似文献   

9.
A very sensitive, selective and simple flow injection time-based method was developed for on-line preconcentration and determination of thorium(IV) at micro g L–1 levels in environmental samples. The system operation was based on thorium(IV) ion retention at pH 4.0 in the minicolumn at a flow rate of 15.2 mL min–1. The trapped complex was then eluted with 3.6 mol L–1 HCl at a flow rate of 4.9 mL min–1. The amount of thorium(IV) in the eluate was measured spectrophotometrically at 651 nm using arsenazo-III solution (0.05 % in 3.6 mol L–1 HCl stabilized with 1 % triton X-100, 4.9 mL min–1) as colorimetric reagent. All chemical, and flow injection variables were optimized for the quantitative preconcentration of metal and a study of interference level of various ions was also carried out. The system offered low backpressure and improved sensitivity and selectivity. At a preconcentration time of 60 s and a sample frequency of 40 h–1, the enhancement factor was 97, the detection limit was 0.25 μg L–1, and the precision expressed as relative standard deviation was 1.08 % (at 50 μg L–1), whereas for 300 s of the preconcentration time and a sample frequency of 10 h–1, the enhancement factor of 357, the detection limit (3σ) of 0.069 μg L–1 and the precision of 1.32 % (at 10 μg L–1) was reported. The accuracy of the developed method was sufficient and evaluated by the analysis of certified reference material IAEA-SL-1 (Lake Sediment) and spiked water samples.  相似文献   

10.
Graphene, a novel class of carbon nanostructures, has great promise for use as sorbent materials because of its ultrahigh specific surface area. A new method using reduced graphene oxide (RGO) as sorbent was developed for the preconcentration of trace amounts of zinc (Zn) to its determination by flame atomic absorption spectrometry. Zinc could be adsorbed quantitatively on RGO in the pH range of 1–9, and then eluted completely with 0.5 mL of 0.1 mol L?1 HCl. Some effective parameters on the extraction were selected and optimized. Under optimum conditions, the calibration graph was linear in the concentration range of 0.2–15 μg L?1 with a detection limit of 0.14 μg L?1 with an enrichment factor of 100.12. The relative standard deviation for ten replicate measurements of 10 μg L?1 of Zn was 0.58 %, respectively. The proposed method was successfully applied in the analysis of rock and vegetable samples. Good spiked recoveries over the range of 99.9–100 % were obtained. This work not only proposes a useful method for sample preconcentration, but also reveals the great potential of graphene as an excellent sorbent material in analytical processes.  相似文献   

11.
A simple method to detect 4-methylimidazole in soft drinks is described. This method is based on headspace solid-phase micro-extraction and gas chromatography–mass spectrometry (HS-SPME GC–MS). The HS-SPME parameters (selection of fiber, extraction temperature, heating time, and pH) were optimized and selected. Under the established condition, the detection and the quantification limit were 1.9 and 6.0 μg L?1 using 4 mL of the liquid sample, respectively. The relative standard deviation for five independent determinations at 100.0 and 500.0 μg L?1 was less than 8 %. The calibration curve was y = 0.6027x–0.0033 with a linearity of r 2 = 0.997. Using the proposed method, the levels of 4-MEI were detected in a range from 94.0 to 324.8 μg L?1. The comparison of liquid chromatography tandem mass spectrometry (LC–MS/MS) with the proposed method was performed and the agreement with LC–MS/MS for all samples was acceptable.  相似文献   

12.
In the present study, application of Fe3O4 magnetic nanoparticles (MNPs) coated with diethyldithiocarbamate as a solid-phase sorbent for extraction of trace amounts of cadmium (Cd2+) and nickel (Ni2+) ions by the aid of ultrasound was investigated. The analytes were determined by inductively coupled plasma-optical emission spectroscopy. Fe3O4 MNPs were prepared by solvothermal method and characterized with dynamic light scattering, scanning electron microscope and X-ray diffraction. Response surface methodology was used for optimization of the extraction process and modeling the data. The optimal conditions obtained were as follows: chelating agent, 1.2 g L?1; pH, 6.13; sonication time, 13 min and Fe3O4 MNPs, 10.3 mg. The calibration curves were linear over the concentration range of 1–1,000 μg L?1 for Cd2+ and 2.5–1,000 for Ni2+ with the determination coefficients (R 2) of 0.9997 and 0.9995, respectively. The limits of detection were 0.27 μg L?1 for Cd2+ and 0.76 μg L?1 for Ni2+. The relative standard deviations (n = 7, C = 200 μg L?1) for determination of Cd2+ and Ni2+ were 2.0 and 2.7 %, respectively. The relative recoveries of the analytes from tap, river and lagoon waters and rice samples at the spiking level of 10 μg L?1 were obtained in the range of 95–105 %.  相似文献   

13.
An on-line extraction/determination set up was designed for micro solid-phase extraction of clodinafop propargyl from water, soil and wheat samples using electrospun polyamide nanofiber mats. The prepared mats were packed in a stainless steel tube which conveniently acted as a high-performance liquid chromatography injection loop. Influential parameters affecting the extraction efficiency were optimized using a distilled water sample fortified with 25 μg L?1 of clodinafop propargyl. An enrichment factor of 440 was achieved for clodinafop propargyl indicating the ability of the whole procedure. Under the optimum conditions, the linearity for the analyte was in the range of 6–700 μg L?1, while a limit of detection and limit of quantification of 2 and 6 μg L?1 were achieved, respectively. The intra-day and inter-day RSD% at the concentration level of 25 μg L?1 were 4.6 and 9.3 %, respectively. To investigate the matrix effect, the developed method was applied to the analysis of real water samples including paddy and river waters as well as the wheat and soil samples. The relative recovery percentages for the spiked samples were in the range of 63–95 %.  相似文献   

14.
《Analytical letters》2012,45(6):905-918
The first sequential injection assay for the generic determination of gabapentin and pregabalin is reported. The analytes react with o-phthalaldehyde in the presence of N-acetylcysteine as a nucleophilic reagent in alkaline medium under flow conditions to form highly fluorescent derivatives. The effect of the main instrumental and chemical variables on the assay was examined. The proposed method was validated for both analytes in terms of linearity, detection, and quantitation limits (c L  = 160 μg L?1, c Q  = 480 μg L?1 for gabapentin, and c L  = 70 μg L?1, c Q  = 210 μg L?1 for pregabalin), precision (s r  < 1.0% in both cases), selectivity, and accuracy. The applicability of the assay was demonstrated by successfully analyzing commercially available formulations. The experimental percent recoveries were in the range of 97.9–102.0% for gabapentin and 98.3–102.3% for pregabalin.  相似文献   

15.
A simple, sensitive and reliable method for the rapid determination of hyponitrite and hyponitrate (Angeli’s salt) in alkaline media, is presented where both species are relatively stable. The method is based on the separation of the two anions by an anion exchange column and thereafter UV spectrophotometric detection at 248 nm. The calibration curves were linear over the concentration range of 0.4–100 mg L?1, whereas the detection limit was found to be 50 μg L?1 for hyponitrite and 100 μg L?1 for hyponitrate. Under these conditions, the determination of nitrate and nitrite is also possible.  相似文献   

16.
The present study describes chelation of Pb(II) with ascorbic acid and formation of a charge-transfer sensitive ion-pair in the presence of Rhodamine 6G at pH 5.5, and then its extraction to the micellar phase of non-ionic surfactant, PONPE 7.5 by an ultrasound-assisted cloud point extraction method before analysis by FAAS. The various variables affecting ion-pair formation and extraction efficiency were studied and optimised. Under the optimised conditions, the good linear relationships in the ranges of 0.4–150 μg L?1 and 0.8–120 μg L?1 for solvent-based calibration and matrix-matched calibration curves, respectively, were achieved with a pre-concentration factor of 71.4 from pre-concentration of 50-mL sample. Moreover, the limits of detection with good sensitivity enhancements of 124 and 114.5 were 0.13 and 0.24 μg L?1, respectively, while the intra-day and inter-day precision (as RSD%, for five replicate measurements of 5 and 100 μg L?1 in the same day and three succeed days) were in range of 2.8–5.4% and 3.7–6.3%, respectively. The matrix effect on triplicate determination of 50 µg L?1 Pb(II) was also investigated. The accuracy of the method was statistically verified by the analysis of two certified reference materials (CRMs) after digestion with acid mixtures (HNO3-H2O2-HF and HNO3-H2O2) and dilution at suitable ratios. It has been observed that there is statistically not a significant difference between the certified- and found-values. The accuracy was also controlled using the pre-treated sample solutions spiked at different concentration levels, and the good spiked recoveries were obtained in range of 90–102.8%. The method was successfully applied to the determination of trace amounts of lead in water and food matrices with satisfactory results.  相似文献   

17.
A new voltammetric method for the determination of rotenone is described. It is based on the reduction of an electroactive derivative of rotenone on the surface of an electrode. Rotenone in water was pre-concentrated using a new type of molecularly imprinted polymer microspheres and can react with hydrazine chloride to produce the electroactive derivative. The experimental conditions were discussed. Under optimum conditions, it was found that the peak potential (Ep) of the derivative of rotenone is ?1.02 V (vs. Ag/AgCl). Using the proposed procedure rotenone can be determined in the range 0.2–400 μg L?1. The detection limit for rotenone is 0.1 μg L?1 and the relative standard deviation for 100 μg L?1 rotenone is 1.99 %. The method was applied to the determination of rotenone in water samples with satisfactory results.  相似文献   

18.
A fully automated method consisting of microextraction by packed sorbent (MEPS) coupled directly to programmed temperature vaporizer–gas chromatography–mass spectrometry (PTV–GC–MS) has been developed to determine the 12 chlorobenzene congeners (chlorobenzene; 1,2-, 1,3-, and 1,4-dichlorobenzene; 1,2,3-, 1,2,4-, and 1,3,5-trichlorobenzene; 1,2,3,4-, 1,2,3,5-, and 1,2,4,5-tetrachlorobenzene; pentachlorobenzene; and hexachlorobenzene) in water samples. The effects of the variables on MEPS extraction, using a C18 sorbent, and the instrumental PTV conditions were studied. The internal standard 1,4-dichlorobenzene d4 was used as a surrogate. The proposed method afforded good reproducibility, with relative standard deviations (RSD %) lower than 12 %. The limits of detection varied between 0.0003 μg L?1 for 1,2,3,4-tetrachlorobenzene and 0.07 μg L?1 for 1,3- and 1,4-dichlorobenzene, while those of quantification varied between 0.001 μg L?1 and 0.2 μg L?1 for the same compounds. Accuracy of the proposed method was confirmed by applying it to the determination of chlorobenzenes in different spiked water samples, including river, reservoir, and effluent wastewater.
Figure
Experimental setup for automated MEPS methodology  相似文献   

19.
A sensitive method based on derivatization with pentafluorophenylhydrazine then headspace gas chromatography–mass spectrometry has been used for analysis of malondialdehyde in human urine. Preparation of urine sample by one-step derivatization/evaporation was performed by reaction of malondialdehyde with pentafluorophenylhydrazine in a headspace vial for 10 min; the derivatives were then injected in GC–MS analysis. The reaction was performed at pH 3, and total analysis time was 35 min. The method detection limit was 0.04 μg L?1. For MDA concentrations of 2.0 and 10.0 μg L?1 the relative standard deviation was less then 5%. The concentration of MDA in urine was measured to be 0.199 ± 0.252 μmol g?1 creatinine (0.022 ± 0.028 μmol mmol?1 creatinine).  相似文献   

20.
A novel, fast and efficient method for the analysis of nitroaniline isomers as model compounds was developed using vortex-assisted supramolecular solvent liquid–liquid microextraction (VA-SMS-LLME). A vortex mixer was used as the mixer in supramolecular solvent liquid–liquid microextraction, and it decreased the extraction time greatly. Several important parameters influencing extraction efficiency, such as the type and volume of extraction solvent, pH of sample, salt effect and extraction time, were optimised in detail. Under the optimal conditions, the enrichment factor was 133 for p-nitroaniline, 98 for m-nitroaniline and 115 for o-nitroaniline, and the limits of detection by HPLC were 0.3, 1.0 and 0.5 μg L?1, respectively. Linearity with determination coefficient from 0.9981 to 0.9993 was evaluated using water samples spiked with the nitroanilines at fourteen different concentration ranging from 4 to 1000 μg L?1. The ranges of intra-day and inter-day precision (n = 5) at 10 μg L?1 of nitroanilines were 1.67–7.05% and 9.4–11.6%, respectively. The VA-SMS-LLME method was successfully applied for preconcentration of nitroanilines in environmental water samples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号