首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The method of molecular dynamics has been used to investigate the influence of thermal oscillations of atoms on the sputtering of surface metal nanoclusters. The sputtering of a copper cluster consisting of 75 atoms from the (100) surface of a copper substrate by 200-eV argon ions for the target being at an equilibrium temperature of 0 and 300 K has been simulated. For each temperature, the sputtering yields have been predicted for both the substrate and the cluster and the polar and azimuthal angular distributions of sputtered atoms have been obtained. The procedure of simulation of two-object cluster-substrate systems at equilibrium temperatures other than 0 K is discussed. __________ Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, No. 7, pp. 20–25, July, 2007.  相似文献   

2.
A new cluster time-of-flight secondary ion mass spectrometry (TOF-SIMS) was developed using a size-selected gas cluster ion as a projectile. Since a large gas cluster ion can generate many low-energy constituent atoms in a collision with the surface, it causes multiple and ultra low-energy sputtering. The mean kinetic energy of constituent atoms is provided by dividing the acceleration energy of the gas cluster ion by the number of constituent atoms. Therefore, the sputtering can be controlled to minimize the decomposition of sample molecules and substrate material by precisely adjusting the number of constituent atoms (the cluster size) and/or acceleration energy of the gas cluster ion. The cluster size was selected on the basis of the time-of-flight method using two ion deflectors attached along the ion-beam line. A high resolution of 11.7 was achieved for the cluster size/size width (MM) of Ar-cluster ions.  相似文献   

3.
The sputtering of clusters consisting of 13, 27, and 75 copper atoms from the (0001) graphite surface under bombardment by Cu2 dimers with energies of 100, 200, and 400 eV has been simulated using the molecular dynamics method. A comparative analysis of the distributions of backscattered particles and their energies over polar angles and the energy distributions of sputtered atoms has been performed. The factors responsible for the large sputtering yield from surface clusters under their bombardment with dimers as compared to copper and xenon monomers have been discussed. It has been demonstrated that, in the case of bombardment with dimers, the substantial role in the sputtering of surface clusters is played by the overlap of collision cascades initiated by each atom of the incident dimer. The differences in the sputtering under cluster and atom bombardments are especially pronounced in the case of large surface clusters.  相似文献   

4.
We measured the sputtering yield, surface roughness and surface damage of thin leucine films bombarded with Ar cluster ions and examined the usefulness of large gas cluster ions for the depth profiling of organic compounds. Ar cluster ion beams with a mean size of 2000 atoms/cluster and energies from 5 to 30 keV were used. Sputtering yields increased linearly with incident ion energy and were extremely high compared to inorganic materials. Surface damage was investigated by measuring positive secondary ions emitted from the leucine film before and after cluster ion irradiation. After irradiation the leucine surface became smoother. The yield ratio of protonated leucine ions to other fragment ions kept constant before and after Ar cluster ion irradiation. These results indicate that large gas cluster ions are useful for depth profiling of organic compounds.  相似文献   

5.
Molecular dynamics (MD) simulations of sputtering process with fluorine cluster impact onto silicon targets were performed. By iterating collisional simulations on a same target, accumulation of incident atoms and evolution of surface morphology were examined as well as emission process of precursors. When (F2)300 clusters were sequentially irradiated on Si(1 0 0) target at 6 keV of total incident energy, column-like surface structure covered with F atoms was formed. As the number of incident clusters increased, sputtering yield of Si atoms also increased because the target surface was well fluoridised to provide SiFx precursors. Size distribution of emitted particles showed that SiF2 was the major sputtered particle, but various types of silicon-fluoride compounds such like Si2Fx, Si3Fx and very large molecules consists of 100 atoms were also observed. This size distribution and kinetic energy distribution of desorbed materials were studied, which showed that the sputtering mechanism with reactive cluster ions is similar to that under thermal equilibrium condition at high-temperature.  相似文献   

6.
The sputtering of tungsten from a target at a temperature of 1470 K during irradiation by 5-eV deuterium ions in a steady-state dense plasma is discovered. The literature values of the threshold for the sputtering of tungsten by deuterium ions are 160–200 eV. The tungsten sputtering coefficient measured by the loss of weight is found to be 1.5×10?4 atom/ion at a deuterium ion energy of 5 eV. Previously, such a sputtering coefficient was usually observed at energies of 250 eV. The sputtering is accompanied by a change in the target surface relief, i.e., by the etching of the grain boundaries and the formation of a wavy structure on the tungsten surface. The subthreshold sputtering at a high temperature is explained by the possible sputtering of adsorbed tungsten atoms that are released from the traps around the interstitial atoms and come to the target surface from the space between the grains. The wavy structure on the surface results from the merging of adsorbed atoms into ordered clusters.  相似文献   

7.
A calculation method for large neutral and/or charged cluster (with number of atoms N > 5) elastic sputtering of a metal during ion bombardment is proposed. The result is presented as a simple assymptotic formula for the probability of cluster ejection and cluster charge state. A conclusion is made on the exponential nature of the dependence of the total cluster yield on the number of atoms the cluster consists of.  相似文献   

8.
Atomic recoil events at and near {001} surfaces of Ni3Al due to elastic collisions between electrons and atoms have been simulated by molecular dynamics to obtain the sputtering threshold energy as a function of atomic species, recoil direction and atomic layer of the primary recoil atom. The minimum sputtering energy occurs for adatoms and is 3.5 and 4.5?eV for Al and Ni adatoms on the Ni–Al surface (denoted ‘M’), respectively, and 4.5?eV for both species on the pure Ni surface (denoted ‘N’). For atoms within the surface plane, the minimum sputtering energy is 6.0?eV for Al and Ni atoms in the M plane and for Ni atoms in the N surface. The sputtering threshold energy increases with increasing angle, θ, between the recoil direction and surface normal, and is almost independent of azimuthal angle, ?, if θ<60°; it varies strongly with ? when θ>60°, with a maximum at ??=?45° due to ?{110}? close-packed atomic chains in the surface. The sputtering threshold energy increases significantly for subsurface recoils, except for those that generate efficient energy transfer to a surface atom by a replacement collision sequence. The implications of the results for the prediction of the mass loss due to sputtering during microanalysis in a FEG STEM are discussed.  相似文献   

9.
Pt(111)表面低能溅射现象的分子动力学模拟   总被引:1,自引:0,他引:1       下载免费PDF全文
颜超  吕海峰  张超  张庆瑜 《物理学报》2006,55(3):1351-1357
利用嵌入原子方法的原子间相互作用势,通过分子动力学模拟,详细研究了贵金属原子在Pt (111)表面的低能溅射现象.模拟结果显示:对于垂直入射情况,入射原子的质量对Pt (11 1)表面的溅射阈值影响不大.当入射原子的能量小于溅射阈值时,入射原子基本以沉积为主 ;当入射原子的能量大于溅射阈值时,溅射产额随入射原子能量的增加而线性增大;当入射 原子能量达到200 eV时,各种入射原子的溅射产额都达到或接近1,此时入射原子主要起溅 射作用.溅射原子发射的角分布概率和溅射花样与高能溅射相类似.研究表明:与基于二体碰 撞近似的线性级联溅射理论不同,当入射原子能量大于溅射阈值时,低能入射原子的溅射产 额正比于入射原子的约化能量和入射原子与基体原子的质量比.通过对低能入射原子的钉扎 能力分析,提出了支配低能溅射的入射原子反射物理机理. 关键词: 分子动力学模拟、低能溅射  相似文献   

10.
The numerical studies of the dynamics of the crystaline lattice formed by atoms requires the detailed knowledge of the forces between these atoms. In our contribution we concentrate on molecular dynamics study of sputtering of Al cluster in the form of the cube (i.e. eight Al atoms). The sputtering is due to impact of Ar and Kr atoms of energy 550 eV. We compare the use of the potential between atoms either of Molière type or the embedded atom potential which has been proposed recently. For the choice of both potential the spectra of sputtered particles were calulated and the comparison was made.  相似文献   

11.
D. Cherns 《Surface science》1979,90(2):339-356
The 1.0 MeV electron microscope has been used to observe and analyse transmission sputtering caused by the electrons in the incident beam. The method, reviewed here, is particularly suitable for investigating low energy collision events. Total sputtering yields and angular distributions of sputtered atoms have been measured for (111) gold films to within a few eV of the sputtering threshold energy. It is shown that the results can be explained by the sputtering of surface atoms either directly by electrons, or indirectly by collision sequences generated down 〈110〉 directions. The necessity of using a many-body collision model to interpret the results is stressed. High resolution electron microscopy has been used to study the surface structure of (111) gold films during sputtering on a near-atomic level. It is shown how the results confirm a model where surface roughness develops due to the migration and agglomeration of surface vacancies produced during sputtering. The future scope of the 1.0 MeV electron microscope as an analytical tool for sputtering is also discussed. It is suggested that the rôle of long range focussed collision sequences in sputtering may be determined for materials of medium atomic number. A need for further high resolution studies of sputtered surfaces is identified; such studies are seen as complementary to those by other surface analysis techniques.  相似文献   

12.
The structural features of the distribution of Pd and Fe atoms in multilayer films derived via Penning-discharge sputtering are studied. The preparation of films is a highly nonequilibrium process; at the same time, it is relatively simple in terms of possible structural implementations, which are shown during the self-organization of sputtered atoms through the formation of clusters with an individual ordered structure. It is important that the “dynamic chaos” that appears during sputtering is stabilized during crystallization, which makes it possible to study the resulting structures using nondestructive inspection methods with fairly wide possibilities. Therefore, it is of interest to study self-organization during the sputtering of multilayer films in order to reveal the mechanisms of cluster formation and to simulate them. It is also shown that the self-organization during sputtering and subsequent crystallization is accompanied not only by the ordering in the form of clusters, buts also by an ordered arrangement of these clusters.  相似文献   

13.
Molecular dynamics simulations of the sputtering of Si by C60 keV bombardment are performed in order to understand the importance of chemical reactions between C atoms from the projectile and Si atoms in the target crystal. The simulations predict the formation of strong covalent bonds between the C and Si atoms, which result in nearly all of the C atoms remaining embedded in the surface after bombardment. At low incident kinetic energies, little sputtering of Si atoms is observed and there is a net deposition of solid material. As the incident kinetic energy is increased, the sputtering yield of Si atoms increases. At 15 keV, the yield of sputtered Si atoms is more than twice the number of C atoms deposited, and there is a net erosion of the solid material.  相似文献   

14.
在27keV Ar+离子轰击时,用收集膜技术结合俄歇谱仪(AES),研究了三元合金Cu76Ni15Sn9系统的择优溅射行为。同时使用扫描电子显微镜(SEM)与电子探针微分析(EPMA).观察了靶点表面形貌变化并测定了形貌特征微区的合金组份原子的相对百分浓度。结果表明,Cu原子较Ni原子、Ni原子较Sn原子,在所测定范围(0─60°)内择优发射。最后讨论了靶点表面形貌特征和“元素局域富集”现象对择优溅射过程的影响。 关键词:  相似文献   

15.
孙凌涛  郭朝中  肖绪洋 《物理学报》2016,65(12):123601-123601
采用分子动力学结合镶嵌原子势方法,模拟研究了Cu原子分别分布于基体Co团簇内层和表面构成Cu-Co合金团簇的结构和热力学性质,研究表明,相同数目的 Cu原子掺杂到基体中因掺杂层的不同,会诱导内层Co团簇和外层Co团簇结构、能量及熔点表现出巨大差异;Cu原子在团簇各层掺杂位置的差异,会导致原子向低能态位置偏移,但相对移动后后续原子的补位,使团簇结构随温度呈相对无扩散度相变;Cu原子由内层向表面偏析是内层Co团簇与相同原子数比例的外层Co团簇熔点产生巨大差异的主要原因.  相似文献   

16.
Molecular dynamics simulations of the 20-keV C60 bombardment at normal incidence of Si, SiC, diamond and graphite targets were performed. The unique feature of these targets is that strong covalent bonds can be formed between carbon atoms from the C60 projectile and atoms in the solid material. The mesoscale energy deposition footprint (MEDF) model is used to gain physical insight into how the sputtering yields depend on the substrate characteristics. A large proportion of the carbon atoms from the C60 projectile are implanted into the lattice structure of the target. The sputtering yield from SiC is ∼twice that from either diamond or Si and this can be explained by both the region of the energized cylindrical tract created by the impact and the number density. On graphite, the yield of sputtered atoms is negligible because the open lattice allows the cluster to deposit its energy deep within the solid. The simulations suggest that build up of carbon with a graphite-like structure would reduce any sputtering from a solid with C60+ bombardment.  相似文献   

17.
A model is proposed for the ion-induced sputtering of a metal in the form of large clusters with a number of atoms N⩾5. The model is based on simple physical assumptions and is consistent with experiment. As an example, calculations are made of the relative cluster yield as a function of the number of atoms in the cluster as a result of the bombardment of various metals by singly charged 5 keV argon ions. A comparison is made with experimental data. Zh. Tekh. Fiz. 69, 64–68 (March 1999)  相似文献   

18.
Abstract

We have used the molecular dynamics (MD) technique using many-body interaction potentials to analyse in detail the processes leading to sputter emission, in order to gain a microscopic understanding of low energy bombardment phenomena. Calculations were performed for a Cu (111) single crystal surface bombarded with Ar atoms in the energy range from 10–1000 eV. The results presented for low bombarding energies are mainly concerned with the near sputtering threshold behaviour, yields and depth of origin of sputtered atoms. Furthermore, it is found, that in addition to sputtered atoms, a large number of ad-atoms at the surface are generated during the evolution of the collision cascade. At higher energies the question of cluster emission and especially their energy distribution and angular distribution are addressed. It was found that the energy distributions for the dimers and monomer atoms exhibit a similar dependence on emission energy as has been observed recently also experimentally. For atoms good agreement with the theoretical Sigmund-Thompson energy distribution was observed. However, for dimers we found that the energy distributions exhibit an asymptotic behaviour at high energies with E?3 rather than with E?5, as predicted in previous modelling of cluster emission. Concerning the angular distributions six emission spots, three strong ones in the <110> and three weak ones in the <100> direction were found for atoms, but for dimers only emission spots in the <110> direction were observed, in agreement with experimental results.  相似文献   

19.
张超  王永亮  颜超  张庆瑜 《物理学报》2006,55(6):2882-2891
采用嵌入原子方法的原子间相互作用势,通过分子动力学方法模拟了低能Pt原子与Cu,Ag,Au,Ni,Pd替位掺杂Pt(111)表面的相互作用过程,系统研究了替位原子对表面吸附原子产额、溅射产额和空位缺陷产额的影响规律,分析了低能沉积过程中沉积原子与基体表面的相互作用机理以及替位原子的作用及其影响规律.研究结果显示:替位原子的存在不仅影响着沉积能量较低时的表面吸附原子的产额与空间分布,而且对沉积能量较高时的低能表面溅射过程和基体表面空位的形成产生重要影响.替位原子导致的表面吸附原子产额、表面原子溅射以及空位形 关键词: 分子动力学 低能粒子 替位掺杂 表面原子产额 溅射 空位  相似文献   

20.
采用分子动力学模拟方法研究了样品温度对Ar+与SiC样品表面相互作用的影响。由模拟结果可知,SiC样品中Si原子的溅射产额随着温度的升高而增加,而温度对C原子的溅射产额影响不大。在相同温度下,Si原子的溅射产额要高于C原子的溅射产额。溅射出来的Si原子和C原子主要来源于样品的表层区域,样品中的Si和C原子密度、键密度及它们的成键方式也发生了较大的变化。初始样品中Si和C原子的密度是均匀的,而被轰击过后的样品表面Si原子的密度要高于C原子,而样品中部C原子的密度要高于Si原子。初始样品都是Si-C键,成键方式为Si-Csp3;被轰击过后又有Si-Si和C-C键,成键方式也发生了变化,还有Si-Csp1和Si-Csp2。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号