首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We perform a multiple scale analysis on the fourth order nonlinear Schrödinger equation in the Hamiltonian form together with the Hamiltonian function. We derive, as amplitude equations, Korteweg‐de Vries flow equations in the bi‐Hamiltonian form with the corresponding Hamiltonian functions. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

2.
We discuss an adiabatic approximation for the evolution generated by an A-uniformly pseudo-Hermitian Hamiltonian H(t). Such a Hamiltonian is a time-dependent operator H(t) similar to a time-dependent Hermitian Hamiltonian G(t) under a time-independent invertible operator A. Using the relation between the solutions of the evolution equations H(t) and G(t), we prove that H(t) and H? (t) have the same real eigenvalues and the corresponding eigenvectors form two biorthogonal Riesz bases for the state space. For the adiabatic approximate solution in case of the minimum eigenvalue and the ground state of the operator H(t), we prove that this solution coincides with the system state at every instant if and only if the ground eigenvector is time-independent. We also find two upper bounds for the adiabatic approximation error in terms of the norm distance and in terms of the generalized fidelity. We illustrate the obtained results with several examples.  相似文献   

3.
Integrable coupling with six potentials is first proposed by coupling a given 3 × 3 discrete matrix spectral problem. It is shown that coupled system of integrable equations can possess zero curvature representations and recursion operators, which yield infinitely many commuting symmetries. Moreover, by means of the discrete variational identity on semi-direct sums of Lie algebras, the Hamiltonian form is deduced for the lattice equations in the resulting hierarchy. Finally, we prove that the hierarchy of the resulting Hamiltonian equations is Liouville integrable discrete Hamiltonian system.  相似文献   

4.
We perform a multiple scales analysis on the modified nonlinear Schrödinger (MNLS) equation in the Hamiltonian form. We derive, as amplitude equations, Korteweg–de Vries (KdV) flow equations in the bi-Hamiltonian form.  相似文献   

5.
Summary We study the theory of isomonodromic deformation for the second order linear differential equations on the Riemann sphere and show that the deformation equations are written in the form of Hamiltonian system completely integrable in the sense of Frobenius. We also obtain from them the Hamiltonian systems with the polynomials Hamiltonians.  相似文献   

6.
We consider three‐dimensional inviscid‐irrotational flow in a two‐layer fluid under the effects of gravity and surface tension, where the upper fluid is bounded above by a rigid lid and the lower fluid is bounded below by a flat bottom. We use a spatial dynamics approach and formulate the steady Euler equations as an infinite‐dimensional Hamiltonian system, where an unbounded spatial direction x is considered as a time‐like coordinate. In addition, we consider wave motions that are periodic in another direction z. By analyzing the dispersion relation, we detect several bifurcation scenarios, two of which we study further: a type of 00(is)(iκ0) resonance and a Hamiltonian Hopf bifurcation. The bifurcations are investigated by performing a center‐manifold reduction, which yields a finite‐dimensional Hamiltonian system. For this finite‐dimensional system, we establish the existence of periodic and homoclinic orbits, which correspond to, respectively, doubly periodic travelling waves and oblique travelling waves with a dark or bright solitary wave profile in the x direction. The former are obtained using a variational Lyapunov‐Schmidt reduction and the latter by first applying a normal form transformation and then studying the resulting canonical system of equations.  相似文献   

7.
We consider analogues of auto- and hetero-Bäcklund transformations for the Jacobi system on a threeaxis ellipsoid. Using the results in a Weierstrass paper, where the change of times reduces integrating the equations of motion to inverting the Abel mapping, we construct the differential Abel equations and auto-Bäcklund transformations preserving the Poisson bracket with respect to which the equations of motion written in the Weierstrass form are Hamiltonian. Transforming this bracket to the canonical form, we can construct a new integrable system on the ellipsoid with a Hamiltonian of the natural form and with a fourth-degree integral of motion in momenta.  相似文献   

8.
We successively apply the generalized Case-Foldy-Feshbach-Villars (CFFV) and the Foldy-Wouthuysen (FW) transformation to derive the Hamiltonian for relativistic scalar particles in an electromagnetic field. In contrast to the original transformation, the generalized CFFV transformation contains an arbitrary parameter and can be performed for massless particles, which allows solving the problem of massless particles in an electromagnetic field. We show that the form of the Hamiltonian in the FW representation is independent of the arbitrarily chosen parameter. Compared with the classical Hamiltonian for point particles, this Hamiltonian contains quantum terms characterizing the quadrupole coupling of moving particles to the electric field and the electric and mixed polarizabilities. We obtain the quantum mechanical and semiclassical equations of motion of massive and massless particles in an electromagnetic field. __________ Translated from Teoreticheskaya i Matematicheskaya Fizika, Vol. 156, No. 3, pp. 398–411, September, 2008.  相似文献   

9.
We use a formula derived almost seventy years ago by Madhav Rao connecting the Jacobi Last Multiplier of a second-order ordinary differential equation and its Lagrangian and determine the Lagrangians of the Painlevé equations. Indeed this method yields the Lagrangians of many of the equations of the Painlevé–Gambier classification. Using the standard Legendre transformation we deduce the corresponding Hamiltonian functions. While such Hamiltonians are generally of non-standard form, they are found to be constants of motion. On the other hand for second-order equations of the Liénard class we employ a novel transformation to deduce their corresponding Lagrangians. We illustrate some particular cases and determine the conserved quantity (first integral) resulting from the associated Noetherian symmetry. Finally we consider a few systems of second-order ordinary differential equations and deduce their Lagrangians by exploiting again the relation between the Jacobi Last Multiplier and the Lagrangian.  相似文献   

10.
We study the homogenization of some Hamilton‐Jacobi‐Bellman equations with a vanishing second‐order term in a stationary ergodic random medium under the hyperbolic scaling of time and space. Imposing certain convexity, growth, and regularity assumptions on the Hamiltonian, we show the locally uniform convergence of solutions of such equations to the solution of a deterministic “effective” first‐order Hamilton‐Jacobi equation. The effective Hamiltonian is obtained from the original stochastic Hamiltonian by a minimax formula. Our homogenization results have a large‐deviations interpretation for a diffusion in a random environment. © 2005 Wiley Periodicals, Inc.  相似文献   

11.
According to the Arnold conjectures and Floer's proofs, there are non-trivial lower bounds for the number of periodic solutions of Hamiltonian differential equations on a closed symplectic manifold whose symplectic form vanishes on spheres. We use an iterated graph construction and Lagrangian Floer homology to show that these lower bounds also hold for certain Hamiltonian delay equations.  相似文献   

12.
We consider factoring subalgebras for loop algebras over so(4). Given a factoring subalgebra, we find (in terms of coefficients of commutator relations) an explicit form of (1) the corresponding system of the chiral-field-equation type, (2) the corresponding two-spin model of the Landau-Lifshitz equation, and (3) the corresponding Hamiltonian system of ordinary differential equations with homogeneous quadratic Hamiltonian and linear so(4)-Poisson brackets. __________ Translated from Fundamentalnaya i Prikladnaya Matematika, Vol. 11, No. 3, pp. 79–94, 2005.  相似文献   

13.
We develop a previously proposed algebraic technique for a Hamiltonian approach to evolution systems of partial differential equations including constrained systems and propose a defining system of equations (suitable for computer calculations) characterizing the Hamiltonian operators of a given form. We demonstrate the technique with a simple example.  相似文献   

14.
Summary The numerical integration of a wide class of Hamiltonian partial differential equations by standard symplectic schemes is discussed, with a consistent, Hamiltonian approach. We discretize the Hamiltonian and the Poisson structure separately, then form the the resulting ODE's. The stability, accuracy, and dispersion of different explicit splitting methods are analyzed, and we give the circumstances under which the best results can be obtained; in particular, when the Hamiltonian can be split into linear and nonlinear terms. Many different treatments and examples are compared.  相似文献   

15.
Summary The governing equations for three-dimensional time-dependent water waves in a moving frame of reference are reformulated in terms of the energy and momentum flux. The novelty of this approach is that time-independent motions of the system—that is, motions that are steady in a moving frame of reference—satisfy a partial differential equation, which is shown to be Hamiltonian. The theory of Hamiltonian evolution equations (canonical variables, Poisson brackets, symplectic form, conservation laws) is applied to the spatial Hamiltonian system derived for pure gravity waves. The addition of surface tension changes the spatial Hamiltonian structure in such a way that the symplectic operator becomes degenerate, and the properties of this generalized Hamiltonian system are also studied. Hamiltonian bifurcation theory is applied to the linear spatial Hamiltonian system for capillary-gravity waves, showing how new waves can be found in this framework.  相似文献   

16.
Spectral stability of multihump vector solitons in the Hamiltonian system of coupled nonlinear Schrödinger (NLS) equations is investigated both analytically and numerically. Using the closure theorem for the negative index of the linearized Hamiltonian, we classify all possible bifurcations of unstable eigenvalues in the systems of coupled NLS equations with cubic and saturable nonlinearities. We also determine the eigenvalue spectrum numerically by the shooting method. In case of cubic nonlinearities, all multihump vector solitons in the nonintegrable model are found to be linearly unstable. In case of saturable nonlinearities, stable multihump vector solitons are found in certain parameter regions, and some errors in the literature are corrected.  相似文献   

17.
On the basis of zero curvature equations from semi‐direct sums of Lie algebras, we construct integrable couplings of the Giachetti–Johnson hierarchy of soliton equations. We also establish Hamiltonian structures of the resulting integrable couplings by the variational identity. Moreover, we obtain bi‐integrable couplings of the Giachetti–Johnson hierarchy and their Hamiltonian structures by applying a class of non‐semisimple matrix loop algebras consisting of triangular block matrices. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

18.
We consider a two‐dimensional inviscid irrotational flow in a two layer fluid under the effects of gravity and interfacial tension. The upper fluid is bounded above by a rigid lid, and the lower fluid is bounded below by a rigid bottom. We use a spatial dynamics approach and formulate the steady Euler equations as a Hamiltonian system, where we consider the unbounded horizontal coordinate x as a time‐like coordinate. The linearization of the Hamiltonian system is studied, and bifurcation curves in the (β,α)‐plane are obtained, where α and β are two parameters. The curves depend on two additional parameters ρ and h, where ρ is the ratio of the densities and h is the ratio of the fluid depths. However, the bifurcation diagram is found to be qualitatively the same as for surface waves. In particular, we find that a Hamiltonian‐Hopf bifurcation, Hamiltonian real 1:1 resonance, and a Hamiltonian 02‐resonance occur for certain values of (β,α). Of particular interest are solitary wave solutions of the Euler equations. Such solutions correspond to homoclinic solutions of the Hamiltonian system. We investigate the parameter regimes where the Hamiltonian‐Hopf bifurcation and the Hamiltonian real 1:1 resonance occur. In both these cases, we perform a center manifold reduction of the Hamiltonian system and show that homoclinic solutions of the reduced system exist. In contrast to the case of surface waves, we find parameter values ρ and h for which the leading order nonlinear term in the reduced system vanishes. We make a detailed analysis of this phenomenon in the case of the real 1:1 resonance. We also briefly consider the Hamiltonian 02‐resonance and recover the results found by Kirrmann. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

19.
We construct the auto-Schlesinger transformations for all equations in the known list of integrable relativistic Toda chains. Our construction is essentially based on the equations being Lagrangian and on a standard transition to their Hamiltonian form; in this case, the transition is described by the changes of variables that are invertible but not pointwise. We discuss two examples of another type that has similar properties; these are also integrable Lagrangian equations allowing the Schlesinger transformation.  相似文献   

20.
We give explicit differential equations for the dynamics of Hamiltonian systems near relative equilibria. These split the dynamics into motion along the group orbit and motion inside a slice transversal to the group orbit. The form of the differential equations that is inherited from the symplectic structure and symmetry properties of the Hamiltonian system is analysed and the effects of time reversing symmetries are included. The results will be applicable to the stability and bifurcation theories of relative equilibria of Hamiltonian systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号