首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 974 毫秒
1.
The spatio-temporal characteristics of the wall-pressure fluctuations in separated and reattaching flows over a backward-facing step were investigated through pressure-velocity joint measurements carried out using multiple-arrayed microphones and split-film probes. A spoke-wheel-type wake generator was installed upstream of the backward-facing step. The flow structure at the effective forcing frequency (St f=0.2) was found to be well organized in terms of wall pressure spectrum, cross-correlation, wavenumber-frequency spectrum, and wavelet auto-correlation. Introduction of the unsteady wake (St f=0.2) reduced the reattachment length by 10%. In addition, the unsteady wake enhanced the turbulence intensity near the separation edge and, as a consequence, enhanced the quadrupole sound sources; however, the turbulence intensity near the reattachment region was weakened and the overall flow noise was attenuated. The greater organization of the flow structure induced by the unsteady wake led to a weakening of the dipole sound sources, which are the dominant sound sources in this system. The dipole sound sources generated by wall pressure fluctuations were calculated using Curles integral formula.Abbreviations AR Aspect ratio - SBF Spatial box filtering Roman symbols C p Wall pressure fluctuation coefficient, p/0.5U 2 - H Step height of backward-facing step (mm) - H s Shape factor (H s = */) - R s Distance from acoustic source point to observation point (m) - Re H Reynolds number, U H/ - St The reduced frequency, fH/U - St f Normalized forcing frequency by unsteady wake, f p H/U - T Vortex shedding period (s) - U Free-stream velocity (m/s) - a Speed of sound (m/s) - f Frequency (Hz) - f p Wake passing frequency (Hz) - k Turbulent kinetic energy (m2/s2) - k x Streamwise wave number (1/m) - k z Spanwise wave number (1/m) - l j Cosine of angle - p Instantaneous wall pressure (Pa) - p rms Root-mean-square of wall pressure (Pa) - p SBF Spatial box filtered wall pressure (Pa) - p d Dipole sound source (Pa) - p w Conditionally-averaged wall pressure (Pa) - q Dynamic pressure, 0.5U 2 (Pa) - r Distance from origin to observation point (mm) - u c Convection velocity (m/s) - umax Root-mean-square of streamwise velocity (m/s) - x R Time-mean reattachment length (mm) Greek symbols p Forward-flow time fraction - Auto-correlation of pressure at x 0 - Two-dimensional cross-correlation of pressure with streamwise separation interval , spanwise separation interval , and time delay , at (x 0, z 0) - Boundary layer thickness (mm, 99%) - * Displacement thickness (mm, ) - ij Kroneckers delta function - Phase angle (°) - Wavelength (mm) - Momentum thickness (mm, ) - Angle between vertical axis and observation point (°) - Density (kg/m3) - Time delay (s) - Streamwise separation interval (m) - Spanwise separation interval (m) - p (f; x 0) Autospectrum of pressure measured at x 0 (Pa2 s) - pp (, ; x 0) Streamwise cross spectrum of pressure at x 0 (Pa2 s) - pp (, , ; x 0, z 0) Streamwise and spanwise cross spectrum of pressure at (x 0, z 0) (Pa2 s) - pp (kx, ; x 0) Streamwise wavenumber-frequency spectrum of pressure at x 0 (Pa2 s) - pp (kx, kz, ; x 0, z 0) Two-dimensional wavenumber-frequency spectrum of pressure at (x 0, z 0) (Pa2 s)  相似文献   

2.
Let D R N be a cone with vertex at the origin i.e., D = (0, )x where S N–1 and x D if and only if x = (r, ) with r=¦x¦, . We consider the initial boundary value problem: u t = u+u p in D×(0, T), u=0 on Dx(0, T) with u(x, 0)=u 0(x) 0. Let 1 denote the smallest Dirichlet eigenvalue for the Laplace-Beltrami operator on and let + denote the positive root of (+N–2) = 1. Let p * = 1 + 2/(N + +). If 1 < p < p *, no positive global solution exists. If p>p *, positive global solutions do exist. Extensions are given to the same problem for u t=+¦x¦ u p .This research was supported in part by the Air Force Office of Scientific Research under Grant # AFOSR 88-0031 and in part by NSF Grant DMS-8 822 788. The United States Government is authorized to reproduce and distribute reprints for governmental purposes not withstanding any copyright notation therein.  相似文献   

3.
General nonlocal diffusive and dispersive transport theories are derived from molecular hydrodynamics and associated theories of statistical mechanical correlation functions, using the memory function formalism and the projection operator method. Expansion approximations of a spatially and temporally nonlocal convective-dispersive equation are introduced to derive linearized inverse solutions for transport coefficients. The development is focused on deriving relations between the frequency-and wave-vector-dependent dispersion tensor and measurable quantities. The resulting theory is applicable to porous media of fractal character.Nomenclature C v (t) particle velocity correlation function - C v ,(t) particle fluctuation velocity correlation function - C j (x,t) current correlation function - D(x,t) dispersion tensor - D(x,t) fluctuation dispersion tensor - f 0(x,p) equilibrium phase probability distribution function - f(x, p;t) nonequilibrium phase probability distribution function - G(x,t) conditional probability per unit volume of finding a particle at (x,t) given it was located elsewhere initially - (k,t) Fourier transform ofG(x,t) - G(x,t) fluctuation conditional probability per unit volume of finding a particle at (x,t) given it was located elsewhere initially - k wave vector - K(t) memory function - L Liouville operator - m mass - p(t) particle momentum coordinate - P = (0)( , (0)) projection operator - Q =I-P projection operator - s real Laplace space variable - S(k, ) time-Fourier transform of(k,t) - t time - v(t) particle velocity vector - v(t) particle fluctuation velocity vector - V phase space velocity - time-Fourier variable - (itn)(k) frequency moment of(k,t) - x(t) particle displacement coordinate - x(t) particle displacement fluctuation coordinate - friction coefficient - (t) normalized correlation function General Functions () Dirac delta function - () Gamma function Averages 0 Equilibrium phase-space average - Nonequilibrium phase-space average - (,) L 2 inner product with respect tof 0  相似文献   

4.
Summary The problem of heat transfer in a two-dimensional porous channel has been discussed by Terrill [6] for small suction at the walls. In [6] the heat transfer problem of a discontinuous change in wall temperature was solved. In the present paper the solution of Terrill for small suction at the walls is revised and the whole problem is extended to the cases of large suction and large injection at the walls. It is found that, for all values of the Reynolds number R, the limiting Nusselt number Nu increases with increasing R.Nomenclature stream function - 2h channel width - x, y distances measured parallel and perpendicular to the channel walls respectively - U velocity of fluid at x=0 - V constant velocity of fluid at the wall - =y/h nondimensional distance perpendicular to the channel walls - f() function defined in equation (1) - coefficient of kinematic viscosity - R=Vh/ suction Reynolds number - density of fluid - C p specific heat at constant pressure - K thermal conductivity - T temperature - x=x 0 position where temperature of walls changes - T 0, T 1 temperature of walls for x<x 0, x>x 0 respectively - = (TT 1)/T 0T 1) nondimensional temperature - =x/h nondimensional distance along channel - R * = Uh/v channel Reynolds number - Pr = C p/K Prandtl number - n eigenvalues - B n() eigenfunctions - B n (0) , () eigenfunctions for R=0 - B 0 (i) , B 0 (ii) ... change in eigenfunctions when R0 and small - K n constants given by equation (13) - h heat transfer coefficient - Nu Nusselt number - m mean temperature - C n constants given by equation (18) - perturbation parameter - B 0i () perturbation approximations to B 0() - Q = B 0/ 0 derivative of eigenfunction with respect to eigenvalue - z nondimensional distance perpendicular to the channel walls - F(z) function defined by (54)  相似文献   

5.
The evaluation of a pump test or a slug test in a single well that completely penetrates a leaky aquifer does not yield a unique relation between the hydraulic properties of the aquifer, independent of the testing conditions. If the flow is transient, the drawdown is characterized by a single similarity parameter that does not distinguish between the storativity and the leakage factor. If the flow is quasi stationary, the drawdown is characterized by a single similarity parameter that does not distinguish between the transmissivity and the leakage factor. The general non steady solution, which is derived in closed form, is characterized bythree similarity parameters.Nomenclature a e 0.8905 = auxiliary parameter - b thickness of the aquifer - b c thickness of the semipervious stratum - B() auxiliary function - f(s),g(s) auxiliary functions in the complex plane - F(t),G(t) auxiliary functions of time - h undisturbed level of the phreatic surface - K conductivity of the aquifer - K c conductivity of the semipervious stratum - m 0 leakage factor - m dimensionless leakage factor - N(s) auxiliary function in the complex plane - Q w (t) discharge flux - Q steady discharge flux - Q 0 constant discharge flux during limited time - Q(t) dimensionless discharge flux - r 0 radius of the well - r radial coordinate - r dimensionless radial coordinate - s complex variable - s 0 pole - S storativity of the aquifer - S n n'th part of an integration contour - t time - t dimensionless time - T transmissivity of the aquifer - ,,,,, dimensionless parameters - Euler's number - dummy variable - 1(), 2() auxiliary functions - (r, t) drawdown - 0(t) drawdown in the well - (r, t) dimensionless drawdown - 0(t) dimensionless drawdown in the well  相似文献   

6.
The present paper is devoted to the theoretical study of the secondary flow induced around a sphere in an oscillating stream of an elastico-viscous liquid. The boundary layer equations are derived following Wang's method and solved by the method of successive approximations. The effect of elasticity of the liquid is to produce a reverse flow in the region close to the surface of the sphere and to shift the entire flow pattern towards the main flow. The resistance on the surface of the sphere and the steady secondary inflow increase with the elasticity of the liquid.Nomenclature a radius of the sphere - b ik contravariant components of a tensor - e contravariant components of the rate of strain tensor - F() see (47) - G total nondimensional resistance on the surface of the sphere - g ik covariant components of the metric tensor - f, g, h secondary flow components introduced in (34) - k 0 measure of relaxation time minus retardation time (elastico-viscous parameter) - K =k 0 2/V 0 2 , nondimensional parameter characterizing the elasticity of the liquid - n measure of the ratio of the boundary layer thickness and the oscillation amplitude - N, T defined in (44) - p arbitrary isotropic pressure - p ik covariant components of the stress tensor - p ik contravariant components of the stress tensor associated with the change of shape of the material - R =V 0 a/v, the Reynolds number - S =a/V 0, the Strouhall number - r, , spherical polar coordinates - u, v, w r, , component of velocity - t time - V(, t) potential velocity distribution around the sphere - V 0 characteristic velocity - u, v, t, y, P nondimensional quantities defined in (15) - reciprocal of s - density - defined in (32) - defined in (42) - 0 limiting viscosity for very small changes in deformation velocity - complex conjugate of - oscillation frequency - = 0/, the kinematic coefficient of viscosity - , defined in (52) - (, y) stream function defined in (45) - =(NT/2n)1/2 y - /t convective time derivative (1) ik   相似文献   

7.
We consider the equation a(y)uxx+divy(b(y)yu)+c(y)u=g(y, u) in the cylinder (–l,l)×, being elliptic where b(y)>0 and hyperbolic where b(y)<0. We construct self-adjoint realizations in L2() of the operatorAu= (1/a) divy(byu)+(c/a) in the case ofb changing sign. This leads to the abstract problem uxx+Au=g(u), whereA has a spectrum extending to + as well as to –. For l= it is shown that all sufficiently small solutions lie on an infinite-dimensional center manifold and behave like those of a hyperbolic problem. Anx-independent cross-sectional integral E=E(u, ux) is derived showing that all solutions on the center manifold remain bounded forx ±. For finitel, all small solutionsu are close to a solution on the center manifold such that u(x)-(x) Ce -(1-|x|) for allx, whereC and are independent ofu. Hence, the solutions are dominated by hyperbolic properties, except close to the terminal ends {±1}×, where boundary layers of elliptic type appear.  相似文献   

8.
Linear and nonlinear viscoelastic properties were examined for a 50 wt% suspension of spherical silica particles (with radius of 40 nm) in a viscous medium, 2.27/1 (wt/wt) ethylene glycol/glycerol mixture. The effective volume fraction of the particles evaluated from zero-shear viscosities of the suspension and medium was 0.53. At a quiescent state the particles had a liquid-like, isotropic spatial distribution in the medium. Dynamic moduli G* obtained for small oscillatory strain (in the linear viscoelastic regime) exhibited a relaxation process that reflected the equilibrium Brownian motion of those particles. In the stress relaxation experiments, the linear relaxation modulus G(t) was obtained for small step strain (0.2) while the nonlinear relaxation modulus G(t, ) characterizing strong stress damping behavior was obtained for large (>0.2). G(t, ) obeyed the time-strain separability at long time scales, and the damping function h() (–G(t, )/G(t)) was determined. Steady flow measurements revealed shear-thinning of the steady state viscosity () for small shear rates (< –1; = linear viscoelastic relaxation time) and shear-thickening for larger (>–1). Corresponding changes were observed also for the viscosity growth and decay functions on start up and cessation of flow, + (t, ) and (t, ). In the shear-thinning regime, the and dependence of +(t,) and (t,) as well as the dependence of () were well described by a BKZ-type constitutive equation using the G(t) and h() data. On the other hand, this equation completely failed in describing the behavior in the shear-thickening regime. These applicabilities of the BKZ equation were utilized to discuss the shearthinning and shear-thickening mechanisms in relation to shear effects on the structure (spatial distribution) and motion of the suspended particles.Dedicated to the memory of Prof. Dale S. Parson  相似文献   

9.
Summary The effect of an internal heat source on the heat transfer characteristics for turbulent liquid metal flow between parallel plates is studied analytically. The analysis is carried out for the conditions of uniform internal heat generation, uniform wall heat flux, and fully established temperature and velocity profiles. Consideration is given both to the uniform or slug flow approximation and the power law approximation for the turbulent velocity profile. Allowance is made for turbulent eddying within the liquid metal through the use of an idealized eddy diffusivity function. It is found that the Nusselt number is unaffected by the heat source strength when the velocity profile is assumed to be uniform over the channel cross section. In the case of a 1/7-power velocity expression, the Nusselt numbers are lower than those in the absence of internal heat generation, and decrease with diminishing eddy conduction. Nusselt numbers, in the absence of an internal heat source, are compared with existing calculations, and indications are that the present results are adequate for preliminary design purposes.Nomenclature A hydrodynamic parameter - a half height of channel - a 1 a constant, 1+0.01 Pr Re 0.9 - a 2 a constant, 0.01 Pr Re 0.9 - C p specific heat at constant pressure - D h hydraulic diameter of channel, 4a - h heat transfer coefficient, q w/(t wt b) - I 1 integral defined by (17) - I 2 integral defined by (18) - k diffusivity parameter, (1+0.01 Pr Re 0.9)1/2 - m exponent in power velocity expression - Nu Nusselt number, hD h/ - Nu 0 Nusselt number in absence of internal heat generation - Pr Prandtl number, / - Q heat generation rate per volume - q w wall heat flux - Re Reynolds number for channel, 2/ - s ratio of heat generation rate to wall heat flux, Qa/q w - T dimensionless temperature, (t wt)/(t wt b) - t fluid temperature, t w wall temperature, t b fluid bulk temperature - u fluid velocity in x direction, , fluid mean velocity - x longitudinal coordinate measured from channel entrance - x + dimensionless longitudinal coordinate, 2(x/a)/Pr Re - y transverse coordinate measured from channel centerline - z transverse coordinate measured from channel wall, ay - molecular diffusivity of heat, /C p - dummy variable of integration - dummy variable of integration - H eddy diffusivity of heat - M eddy diffusivity of momentum - dummy variable of integration - fluid thermal conductivity - T dimensionless diffusivity, Pr ( H/) - fluid kinematic viscosity - dummy variable of integration - fluid density - dummy variable of integration - ratio of eddy diffusivity for heat transfer to that for momentum transfer, H/ M - average value of - dimensionless velocity distribution, u/  相似文献   

10.
The exact solution of the equation of motion of a circular disk accelerated along its axis of symmetry due to an arbitrarily applied force in an otherwise still, incompressible, viscous fluid of infinite extent is obtained. The fluid resistance considered in this paper is the Stokes-flow drag which consists of the added mass effect, steady state drag, and the effect of the history of the motion. The solutions for the velocity and displacement of the circular disk are presented in explicit forms for the cases of constant and impulsive forcing functions. The importance of the effect of the history of the motion is discussed.Nomenclature a radius of the circular disk - b one half of the thickness of the circular disk - C dimensionless form of C 1 - C 1 magnitude of the constant force - D fluid drag force - f(t) externally applied force - F() dimensionaless form of applied force - F 0 initial value of F - g gravitational acceleration - H() Heaviside step function - k magnitude of impulsive force - K dimensionless form of k - M a dimensionless parameter equals to (1+37#x03C0;s/4f) - S displacement of disk - t time - t 1 time of application of impulsive force - u velocity of the disk - V dimensionless velocity - V 0 initial velocity of V - V t terminal velocity - parameter in (13) - parameter in (13) - (t) Dirac delta function - ratio of b/a - () function given in (5) - dynamical viscosity of the fluid - kinematic viscosity of the fluid - f fluid density - s mass density of the circular disk - dimensionless time - i dimensionless form of t i - dummy variable - dummy variable  相似文献   

11.
Two-phase mixtures of hot brine and steam are important in geothermal reservoirs under exploitation. In a simple model, the flows are described by a parabolic equation for the pressure with a derivative coupling to a pair of wave equations for saturation and salt concentration. We show that the wave speed matrix for the hyperbolic part of the coupled system is formally identical to the corresponding matrix in the polymer flood model for oil recovery. For the class ofstrongly diffusive hot brine models, the identification is more than formal, so that the wave phenomena predicted for the polymer flood model will also be observed in geothermal reservoirs.Roman Symbols A,B coefficient matrices (5) - c(x,t) salt concentration (primary dependent variable) - C(p, s, c, q t) wave speed matrix (6) - f source term (5) - g acceleration due to gravity (constant) - h b(p, c) brine specific enthalpy - h v(p) vapour specific enthalpy - j conservation flux (1) - k absolute permeability (constant) - k b(s), kv(s) relative permeabilities of the brine and vapour phases - K conductivity - p(x,t) pressure (primary dependent variable) - q volume flux (Darcy velocity) (3) - s(x,t) brine saturation (primary dependent variable) - t time (primary independent variable) - T=T sat(p) saturation temperature - u b(p, c) brine specific internal energy - u m T rock matrix specific internal energy - u v(p) vapour specific internal energy - U(x, t) shock velocity - x space (primary independent variable) Greek Symbols porosity (constant) - b(p, c) brine dynamic viscosity - v(p) vapour dynamic viscosity - (p, s, c) conservation density (1) - b(p, c) brine density - v(p) vapour density Suffixes b brine - m rock matrix - t total - v vapour - S salt - M mass - E energy  相似文献   

12.
Non-linear diffusion and velocity-dependent dispersion problems are under consideration. The necessary and sufficient conditions allowing the comparison of solutions to the two dimensional convection-dispersion equations with different coefficients are obtained. These conditions provide a framework within which solutions to the complex non-linear problems mentioned above can be estimated by solutions to the problems possessing analytical solvability.Nomenclature c(x, y, t) concentration of solute in solution,ML –3 - C(h)=d/dh moisture capacity function - D,D ij hydrodynamic dispersion coefficient, a second order tensor,L 2 T –1 - D L longitudinal hydrodynamic dispersion coefficient,L 2 T –1 - D m molecular diffusion coefficient,L 2 T –1 - D T transverse hydrodynamic coefficient,L 2 T –1 - G flow domain for the unsaturated flow problem - G z , G w flow domain and complex potential domain, respectively, for the hydrodynamic dispersion problem - h piezometric head,L - I n given mass flux normal to the boundary,MLT –1 - k hydraulic conductivity,LT –1 - K(h) unsaturated hydraulic conductivity,LT –1 - L continuously differentiable function with respect to all arguments - m porosity - n(x,t) outer normal vector to the boundary - t time,T - V(x, y, t) seepage velocity vector withV=V,LT –1 - x Cartesian coordinate system - x horizontal coordinate,L - y vertical coordinate (elevation),L - (x),(x,t) given functions in initial and boundary conditions (3), (4) - 1(,) angle between vectors 1c andV - boundary of the flow domain - L , T longitudinal and transverse dispersivities, respectively,L - water mass density,ML –3 - v i components of a unit vector in the direction of the outward normal to the boundary - =–kh velocity potential - =/m - stream function defined such thatw=+i is the complex potential - =/m  相似文献   

13.
Summary The viscous properties of calcium carbonate filled polyethylene and polystyrene melts were examined. The relative vircosity r defined in the previous paper gave an asymtptotic value( r)l in the range of the shear stress below 105 dyne/cm2.( r)l of the calcium carbonate filled system was higher than that of the glass beads or glass balloons filled system at the same volume fraction of the filler. Maron-Pierce equation with 0 = 0.44 was able to approximate the( r)l — relationship. However, it was deduced here that the high value of( r)l of calcium carbonyl filled system was due to the apparent increase of and this increase was attributed to the fixed polymer layer formed on the powder particle. By assuming the particle as a sphere with a diameter of 2 µm, the thickness of the fixed polymer layer was estimated as about 0.17 µm. The yield stress estimated from the Casson's plots increased exponentially with.
Zusammenfassung Es wurden die viskosen Eigenschaften von Polyäthylen-und Polystyrol-Schmelzen untersucht, die mit Kalziumkarbonat-Teilchen gefüllt waren. Für die relative Viskosität r, wie sie in einer vorangegangenen Veröffentlichung definiert worden war, ergab sich bei Schubspannungen unterhalb 105 dyn/cm2 ein asymptotischer Wert( r)l. Dieser war bei den mit Kalziumkarbonat gefüllten Schmelzen höher als bei Schmelzen, die bis zur gleichen Volumenkonzentration mit Glaskugeln oder Glasballons gefüllt waren. Die ( r) l -Abhängigkeit ließ sich durch eine Gleichung nachMaron und Pierce mit 0 = 0,44 beschreiben. Es wurde jedoch geschlossen, daß der hohe( r)l-Wert der mit Kalziumkarbonat gefüllten Schmelzen auf eine scheinbare Zunahme von zurückzuführen ist, verursacht durch eine feste Polymerschicht auf der Teilchenoberfläche. Unter Annahme kugelförmiger Teilchen mit einem Durchmesser von 2 µm ließ sich die zugeordnete Schichtdicke zu 0,17 µm abschätzen. Die mittels der Casson-Beziehung geschätzte Fließspannung ergab eine exponentielle-Abhängigkeit.


With 7 figures and 1 table  相似文献   

14.
Superposition of oscillatory shear imposed from the boundary and through pressure gradient oscillations and simple shear is investigated. The integral fluid with fading memory shows flow enhancement effects due to the nonlinear structure. Closed-form expressions for the change in the mass transport rate are given at the lowest significant order in the perturbation algorithm. The elasticity of the liquid plays as important a role in determining the enhancement as does the shear dependent viscosity. Coupling of shear thinning and elasticity may produce sharp increases in the flow rate. The interaction of oscillatory shear components may generate a steady flow, either longitudinal or orthogonal, resulting in increases in flow rates akin to resonance, and due to frequency cancellation, even in the absence of a mean gradient. An algorithm to determine the constitutive functions of the integral fluid of order three is outlined.Nomenclature A n Rivlin-Ericksen tensor of order . - A k Non-oscillatory component of the first order linear viscoelastic oscillatory velocity field induced by the kth wave in the pressure gradient - d Half the gap between the plates - e x, e z Unit vectors in the longitudinal and orthogonal directions, respectively - G(s) Relaxation modulus - G History of the deformation - Stress response functional - I() Enhancement defined as the ratio of the frequency dependent part of the discharge to the frequencyindependent part of it at the third order - I *() Enhancement defined as the ratio of the increase in discharge due to oscillations to the total discharge without the oscillations - k Power index in the relaxation modulus G(s) - k i –1 Relaxation times in the Maxwell representation of the quadratic shear relaxation modulus (s 1, s 2) - m i –1, n i –1 Relaxation times in the Maxwell representations of the constitutive functions 1(s 1,s 2,s 3) and 4 (s 1, s 2,s 3), respectively - P Constant longitudinal pressure gradient - p Pressure field - mx ,(3) nz ,(3) Mean volume transport rates at the third order in the longitudinal and orthogonal directions, respectively - 0,(3), 1,(3) Frequency independent and dependent volume transport rates, respectively, at the third order - s = t- Difference between present and past times t and   相似文献   

15.
We establish the saddle-point property of the system of functional differential equations (t) = Ax(t) + Bx((t)) + C ((t)) + f (x(t), x((t))), (0) = 0.Translated from Neliniini Kolyvannya, Vol. 7, No. 3, pp. 302–310, July–September, 2004.  相似文献   

16.
We consider the parametrized family of equations tt ,u- xx u-au+u 2 2 u=O,x(0,L), with Dirichlet boundary conditions. This equation has finite-dimensional invariant manifolds of solutions. Studying the reduced equation to a four-dimensional manifold, we prove the existence of transversal homoclinic orbits to periodic solutions and of invariant sets with chaotic dynamics, provided that =2, 3, 4,.... For =1 we prove the existence of infinitely many first integrals pairwise in involution.  相似文献   

17.
A method is presented for the cancellation of wide band contaminating noise occurring within internal flow configurations such as rectangular channels and pipes. Facility generated noise within these flow systems contaminates the turbulent wall pressure signature at low frequencies thus preventing the possible extraction of useful information. The proposed methodology utilizes the signals from two flush mounted wall pressure transducers. A first estimate for the one-point spectral density is obtained using a least mean square algorithm. A secondary correction to this estimate is obtained by taking advantage of the planar homogeneity of the turbulence. The application of the technique is demonstrated in a fully developed turbulent channel flow for which a more than 40 dB cancellation is obtained at low frequencies. In this low frequency range, the power spectral density is shown to have an approximate quadratic dependence, substantiating past theoretical predictions reported in the literature.List of symbols d transducer diameter - d + non-dimensional transducer diameter, - f frequency (Hz) - h channel half-height - l spanwise separation of transducers - p N (t) signal due to contaminating noise - p q (t) system output signal - p R (t) turbulent wall pressure signal at reference transducer - p 1(t) turbulent wall pressure signal at primary transducer - R h channel Reynolds number, - s R (t) pressure signal from reference transducer - s 1 (t) pressure signal from primary transducer - t time - U channel centerline velocity, (maximum velocity) - u * shear velocity, - W(f) optimized filter function used for cancellation (Fourier transform) - correction factor, (noise to signal ratio) - 2 coherence function - z lateral turbulence macro-scale - N correlation length scale of contaminating noise - v kinematic viscosity - fluid density - wall wall shear stress - pN (f) auto spectral density of p N (t) - pR (f) auto spectral density of p R (t) - 1 p auto spectral density of p 1(t) - sR (f) auto spectral density of s R (t) - 1 s(f) auto spectral density of s 1(t) - 1ssr cross spectral density of s 1 (t) with s R (t)  相似文献   

18.
Transient propagation of weak pressure perturbations in a homogeneous, isotropic, fluid saturated aquifer has been studied. A damped wave equation for the pressure in the aquifer is derived using the macroscopic, volume averaged, mass conservation and momentum equations. The equation is applied to the case of a well in a closed aquifer and analytical solutions are obtained to two different flow cases. It is shown that the radius of influence propagates with a finite velocity. The results show that the effect of fluid inertia could be of importance where transient flow in porous media is studied.List of symbols b Thickness of the aquifer, m - c 0 Wave velocity, m/s - k Permeability of the porous medium, m2 - n Porosity of the porous medium - p( ,t) Pressure, N/m2 - Q Volume flux, m3/s - r Radial coordinate, m - r w Radius of the well, m - s Transform variable - S Storativity of the aquifer - S d(r, t) Drawdown, m - t Time, s - T Transmissivity of the aquifer, m2/s - ( ,t) Velocity of the fluid, m/s - Coordinate vector, m - z Vertical coordinate, m - Coefficient of compressibility, m2/N - Coefficient of fluid compressibility, m2/N - Relaxation time, s - (r, t) Hydraulic potential, m - Dynamic viscosity of the fluid, Ns/m2 - Dimensionless radius - Density of the fluid, Ns2/m4 - (, ) Dimensionless drawdown - Dimensionless time - , x Dummy variables - 0, 1 Auxilary functions  相似文献   

19.
In this paper we study linear reaction–hyperbolic systems of the form , (i = 1, 2, ..., n) for x > 0, t > 0 coupled to a diffusion equation for p 0 = p 0(x, y, θ, t) with “near-equilibrium” initial and boundary data. This problem arises in a model of transport of neurofilaments in axons. The matrix (k ij ) is assumed to have a unique null vector with positive components summed to 1 and the v j are arbitrary velocities such that . We prove that as the solution converges to a traveling wave with velocity v and a spreading front, and that the convergence rate in the uniform norm is , for any small positive α.  相似文献   

20.
Summary A method of determining the thermal stresses in a flat rectangular isotropic plate of constant thickness with arbitrary temperature distribution in the plane of the plate and with no variation in temperature through the thickness is presented. The thermal stress have been obtained in terms of Fourier series and integrals that satisfy the differential equation and the boundary conditions. Several examples have been presented to show the application of the method.Nomenclature x, y rectangular coordinates - x, y direct stresses - xy shear stress - ø Airy's stress function - E Young's modulus of elasticity - coefficient of thermal expansion - T temperature - 2 Laplace operator: - 4 biharmonic operator - 2a length of the plate - 2b width of the plate - a/b aspect ratio - a mr, bms, cnr, dns Fourier coefficients defined in equation (6) - m=m/a m=1, 2, 3, ... n=n/2a n=1, 3, 5, ... - r=r/b r=1, 2, 3, ... s=s/2b s=1, 3, 5, ... - A m, Bm, Cn, Dn, Er, Fr, Gs, Hs Fourier coefficients - K rand L s Fourier coefficients defined in equation (20) - direct stress at infinity - T 1(x, y) temperature distribution symmetrical in x and y - T 2(x, y) temperature distribution symmetrical in x and antisymmetrical in y - T 3(x, y) temperature distribution antisymmetrical in x and symmetrical in y - T 4(x, y) temperature distribution antisymmetrical in x and y  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号